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A B S T R A C T

With the application of energy-maximizing control for wave energy converters (WECs), the WEC design
problem becomes a control co-design problem. One of the fundamental requirements of co-design is to
evaluate the optimal control performance, i.e., average power generation. Previous control techniques include
model predictive control (MPC) and pseudo-spectral (PS) control, but both require iterative optimization,
with computational requirements the main limiting factor in co-design. In this study, a fast optimal control
performance evaluation method is proposed based on a ‘wave-by-wave’ (WbW) representation. The idea is
to split the wave excitation force (WEF) signals into individual waves, process them separately, and then
combine the results with the distribution of WEF amplitude and period, yielding a straightforward average
power calculation. The method is fully developed and studied, considering the cases of position-only, and
general, constraints, as well as different choices to obtain the WEF parameter distribution. It is shown that
the WbW method can achieve a very high control evaluation fidelity (within a 5% error) and give almost
the same co-design result as MPC and PS (implemented using WecOptTool), but with a significantly reduced
computation time (e.g., hundreds of times faster), therefore being a game changer for control co-design of
WECs.
1. Introduction

Rapidly developed in the last decade, advanced control for wave
energy converters (WECs) is recognized to be one of the most effective
techniques to improve their power capture efficiency and lower the
levelized cost of energy (LCoE) [1]. Compared with traditional WEC
controllers that work passively, advanced controllers such as the reac-
tive control [2], latching control [3], and constrained model predictive
control (MPC) [4] can actively manipulate the WEC dynamics so that
more energy can be captured by the device.

However, with advanced control involved, the WEC design problem,
i.e., to determine the best geometry, mechanical and power take-off
(PTO) limits, or other design parameters, becomes more complex, due
to the contribution of the WEC and controller parameters to the overall
WEC dynamics. Consequently, the ‘optimal’ WEC design parameters
are highly dependent on the controller [5]. Hence, the original design
process becomes a control co-design process, which is widely adopted
for wind power systems [6].

Ideally, one would want to use the optimal controller to maximize
power capture within device constraints, and accordingly, one needs
to design the WEC based on this optimal controller. In fact, MPC
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is recognized to represent the optimal constrained performance [7]
and has seen successful implementations [8]. MPC typically works
by solving receding-horizon control problems with time-domain dis-
cretization. If such a controller is to be used for co-design, in order
to evaluate the performance, e.g., the annual average power for any
given set of design parameters: (i) Time-domain simulation of the WEC
system is needed, (ii) In each simulation, a series of receding-horizon
optimization problems need to be solved, and (iii) the simulation
should be repeated for multiple sea states in a given sea area, and
for multiple phase realizations for each sea state [9]. As a result, the
co-design process can be computationally prohibitive. Hence, it is of
great value to find a control performance evaluation method that gives
the same performance as MPC but is more computationally efficient.
Since control co-design is an off-line calculation, i.e., it is not necessary
to simulate a real-time controller that only uses currently available
information, a ‘global’ representation of the system suffices to evaluate
the performance. However, while it is possible to adopt a ‘global’ MPC,
with a control horizon covering the entire operating (evaluation, in a
co-design setting) time of the device, the corresponding optimization
problem may face too a large dimension. Alternatively, the global
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pseudo-spectral (PS) method adopts a frequency-domain discretization,
using Fourier series, to represent control trajectories and combines
them with time-domain constraints to solve the control problem [10],
which is a particularly suitable for the oscillating nature of WECs.
The PS technique has been applied in a number of co-design studies,
including WecOptTool, a co-design toolbox [11]. See Section 3 for
a detailed description of current co-design options. Nevertheless, the
need for optimization remains, and there exists considerable scope for
acceleration in computation; the WEC community still needs a faster
method, not only two or three times faster but orders of magnitude
faster. As a prime example, the concurrent (co-design) optimization
of array layout and heterogeneous device geometry optimization [12]
presents a very challenging computational problem.

In this article, an ultra-fast optimal control performance evaluator
is proposed, with MPC and PS (implemented using WecOptTool) being
the benchmarks. The method is based on a wave-by-wave representa-
tion [13], which is common in wave analysis but novel in the WEC
control context. By splitting the continuous long-term wave excitation
force (WEF) into individual wave processes, the calculation of average
power can be considerably simplified with this method termed the
‘WbW’ (wave-by-wave) method. First, an analytical optimal control
solution, under a maximum stroke, during each individual wave of the
WEF, is derived and then combined with the joint distribution of WEF
amplitude and period. In this way, the need for iterative optimization
is eliminated and the average power can be calculated hundreds of
times faster than PS or MPC. Then, the method is generalized by
combining PS and the wave-by-wave representation to address the PTO
force constraint, and this second evolution is several times faster than
the original PS. Finally, it will be shown that the WbW method can
maintain the evaluation fidelity and arrive at the same co-design result
as PS. However, the proposed method is intended purely for use in an
off-line control co-design context, and is not intended for use as a real-
time controller. Nevertheless, it may be possible to extend the control
technique for real-time use, but this is the subject of a future study.

The contributions of this study are as follows. First, a powerful co-
design tool to evaluate the optimal control performance of WECs is
proposed. Second, an analytical optimal control solution is derived for
individual waves of the WEF under a maximum stroke. Third, the pos-
sibilities following the WbW idea are developed, with the underlying
mechanisms analysed in detail. Finally, this study marks the first time
that the joint distribution of individual wave amplitude and period is
combined with optimal control of WECs, which can provide insights for
future research.

The remainder of this article is organized as follows. The WEC
system model is introduced in Section 2, and existing control options
for co-design are reviewed in Section 3. The WbW method is proposed
in Section 4, and the validation of its fidelity and co-design result is
presented in Section 5.

2. WEC system model

The schematic of a typical WEC is shown in Fig. 1. The body
oscillates in heave when excited by waves and is linked to a PTO
system. As commonly assumed in fundamental studies on WEC control,
the PTO is regarded as an ideal actuator that produces the desired force
issued by the controller.

2.1. Model of the body

The equation of motion in the frequency domain can be described
[14] by
[

𝑗 𝜔(𝑀 +𝑀a(𝜔)) + (𝑅0 + 𝑅a(𝜔)) + 𝐾
𝑗 𝜔

]

𝑉 (𝑗 𝜔) = 𝑊 (𝑗 𝜔) + 𝑈 (𝑗 𝜔), (1)

where 𝑗 =
√

−1, 𝜔 is the angular frequency, 𝑉 , 𝑊 , 𝑈 are the body ve-
locity, WEF, and PTO force, 𝑀 , 𝑀 , 𝑅 , 𝐾, 𝑅 are the body mass, added
a a 0

2 
Fig. 1. Schematic of a typical WEC system. SWL: still water level.

mass, radiation damping, restoring force coefficient, and linearized
damping for mechanical friction and viscous forces, respectively.

The corresponding time-domain equation is
(𝑀 +𝑀∞)𝑧̈(𝑡) + 𝑅0𝑧̇(𝑡) + ∫

𝑡

−∞
𝑘r (𝑡 − 𝜏)𝑧̇(𝜏)𝑑 𝜏 +𝐾 𝑧(𝑡) = 𝑤(𝑡) + 𝑢(𝑡), (2)

where 𝑡 is continuous time, 𝑧, 𝑧̇, and z̈ are the body position, velocity,
and acceleration, 𝑤 and 𝑢 are the WEF and PTO force, 𝑀∞ is the
infinite-frequency added mass, and 𝑘r = −1{𝑅𝑎(𝜔) + 𝑗 𝜔(𝑀𝑎(𝜔) −
𝑀∞)} is the retardation function with −1 denoting the inverse Fourier
transform. The convolution term can be described as the output of the
following system

𝜉̇(𝑡) = 𝐴r𝜉(𝑡) + 𝐵r 𝑧̇(𝑡)

∫

𝑡

−∞
𝑘r (𝑡 − 𝜏)𝑧̇(𝜏)𝑑 𝜏 ≈ 𝐶r𝜉(𝑡), (3)

where 𝜉 ∈ R𝑛 is the radiation state, and 𝐴r , 𝐵r , 𝐶r are the system ma-
trices. Now, the overall WEC system can be expressed in a state-space
form

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐵 𝑤(𝑡), (4)

where 𝑥 = [𝑧̇, 𝑧, 𝜉T]T ∈ R𝑛+2 is the augmented state, and the matrices 𝐴
and 𝐵 are

𝐴 =

⎡

⎢

⎢

⎢

⎣

− 𝑅0
𝑀+𝑀∞

− 𝐾
𝑀+𝑀∞

− 𝐶r
𝑀+𝑀∞

1 0 01×𝑛
𝐵r 0𝑛×1 𝐴r

⎤

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎣

1
𝑀+𝑀∞

0
0𝑛×1

⎤

⎥

⎥

⎥

⎦

. (5)

2.2. Model of the waves

A sea state is typically described by a significant wave height 𝐻s
and a peak period 𝑇p. In this study, the following Bretschneider model
is used

𝑆(𝜔) = 5
16

𝜔4
p

𝜔5
𝐻2

s exp

{

−
5𝜔4

p

4𝜔4

}

, (6)

where 𝑆(𝜔) is the energy spectrum, and 𝜔p = 2𝜋∕𝑇p is the peak
frequency.

To generate a wave elevation signal from the spectrum, so as to
assess the control performance, following the widely-used technique
based on Fourier series [9], one can first determine a series of frequency
points 𝑛1𝜔0, (𝑛1 + 1)𝜔0,… , 𝑛2𝜔0 that covers the frequency range of
𝑆(𝜔), where 𝜔0 is the fundamental frequency, and then establish the
following Fourier series

𝜂(𝑡) =
𝑛2
∑

𝑖=𝑛1

𝐴𝑖 cos
(

𝑖𝜔0𝑡 + 𝜙𝑖
)

, (7)

where 𝐴𝑖 and 𝜙𝑖 are the amplitude and phase of the 𝑖th component.
The amplitudes are calculated as

√

𝐴𝑖 = 2𝑆(𝑖𝜔0)𝜔0, 𝑖 = 𝑛1,… , 𝑛2, (8)
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while the phases 𝜙𝑛1 ,… , 𝜙𝑛2 are usually set to be artificial random
variables independent and uniformly distributed over [0, 2𝜋] so that
different wave signals can be generated from the same spectrum by
shuffling the phases [9]. Accordingly, the time-domain WEF is

𝑤(𝑡) =
𝑛2
∑

𝑖=𝑛1

|𝐹e(𝑗 𝑖𝜔0)|𝐴𝑖 cos
(

𝑖𝜔0𝑡 + 𝜙𝑖 + ∠𝐹e(𝑗 𝑖𝜔0)
)

, (9)

where 𝐹e is the (complex) excitation coefficients of the body, and | ⋅ |
and ∠⋅ denote the complex modulus and angle. Note that 𝜂(𝑡) and 𝑤(𝑡)
are periodic with a period of 𝑇 = 2𝜋∕𝜔0. Also note that 𝜂(𝑡) in Eq. (7)
nd 𝑤(𝑡) in (9) are linked with a linear, non-causal system (‘wave-to-

force’ system); since Eq. (9) is directly generated from the frequency
omain, it is, in fact, the steady-state output of that system, without
ny transients.

3. Control options for co-design

3.1. Linear controllers and variations

Linear controllers form the simplest choice for co-design. Con-
ventional damping and reactive controllers are purely feedback, easy
to implement, but not optimal under irregular waves. Panchromatic
complex conjugate (CC) control achieves the unconstrained optimum,
which is non-causal, and the linear time-invariant controller (LiTe-
Con) [15] can address the position constraint, although conservatively.

he advantage of using linear controllers for co-design is that their
verage power can be directly calculated in the frequency domain
ffline [16,17], regardless of whether they require wave prediction in

real-time implementation. Some other pseudo-linear approaches for co-
design have also been reported. In [18,19], a linear controller is used,
ut the performance is evaluated in the time domain, where only the

energy contributed by the trajectory within the constraints is included
in the result. The controller is still not constraint-aware and the result
cannot reflect the constrained optimum. Alternatively, in a recent
project targeting the co-design of heterogeneous WEC arrays [20], the
optimal control within a maximum control force and with positive
ower is solved using Pontryagin’s principle. The controller switches
etween a linear, singular-arc law and a bang–bang control, and can
e efficiently simulated in the time domain. Nevertheless, the controller
s designed for regular waves, and the maximum stroke, as one of the
ost critical constraints of a WEC, cannot be handled.

From this category of ‘simple’ WEC controllers, CC control is chosen
as the first benchmark, since it gives an upper bound for what a given
geometry can achieve. Under CC control, (frequency-domain) optimal
velocity satisfies

𝑉 (𝑗 𝜔) = 𝑊 (𝑗 𝜔)
2(𝑅0 + 𝑅a(𝜔))

. (10)

The average power converted equals the captured wave power minus
the power loss

𝑃 (𝜔) = 1
2
Re{𝑊 (𝑗 𝜔)𝑉 (𝑗 𝜔) − 𝑉 (𝑗 𝜔)𝑉 (𝑗 𝜔)(𝑅0 + 𝑅a(𝜔))}, (11)

where Re denotes the real part, and 𝑉 denotes the complex conjugate
of 𝑉 . Combining Eqs. (8)–(11), the average power can be calculated as

𝑃 =
𝑛2
∑

𝑖=𝑛1

|𝐹e(𝑗 𝑖𝜔0)|
2𝑆(𝑖𝜔0)𝜔0

4(𝑅0 + 𝑅a(𝑖𝜔0))
, (12)

and this can be computed without deriving a real-time CC control law.

3.2. MPC (Receding-horizon, time-domain-discretized control)

Compared to linear control, MPC offers a unified framework for
onstraint handling and represents the optimal constrained perfor-
ance [4,7]. For example, MPC-based co-design is adopted in [21]

o study the effects of various mechanical and electrical constraints.
owever, computation remains the biggest obstacle to its application.
3 
In this study, MPC refers to the receding-horizon, time-discretized
PC, with an energy-maximizing performance objective for WEC con-

trol [4], and is taken as the second benchmark. The MPC algorithm
in [8] that falls into this category is used. Two critical constraints are
considered: The maximum stroke 𝑍m and the maximum PTO force 𝑈m.
First, the continuous-time model is discretized into

𝑥[𝑘 + 1] = 𝐴d𝑥[𝑘] + 𝐵d𝑢[𝑘] + 𝐵d𝑤[𝑘], (13)

where 𝑘 is the discrete time index with a sampling time of 𝑇s, and
𝐴d and 𝐵d are the discrete-system matrices; using zero-order-hold
discretization, there are 𝐴d = exp{𝐴𝑇s} and 𝐵d = 𝐴−1(𝐴d − 𝐼)𝐵 with

being the identity matrix. At each step of MPC, a control sequence
̄0,… , ̄𝑢𝑁−1 starting from the current state 𝑥[𝑘] and going through the
redicted WEFs 𝑤[𝑘],… , 𝑤[𝑘 + 𝑁 − 1] during a prediction horizon

is solved, such that it maximizes the extracted energy during the
rediction horizon, while satisfying the constraints. This optimization
roblem can be expressed as

max
𝑢̄0 ,…, ̄𝑢𝑁−1

𝐸̄ =
𝑁−1
∑

𝑖=0
𝑅̄𝑖,

s.t. 𝑅̄𝑖 = −1
2
𝑇s𝐶1(𝑥̄𝑖 + 𝑥̄𝑖+1)𝑢̄𝑖, 𝑖 = 0,… , 𝑁 − 1

𝑥̄𝑖+1 = 𝐴d𝑥̄𝑖 + 𝐵d𝑢̄𝑖 + 𝐵d𝑤̄𝑖, 𝑖 = 0,… , 𝑁 − 1
− 𝑍m ≤ 𝐶2𝑥̄𝑖 ≤ 𝑍m, 𝑖 = 1,… , 𝑁
− 𝑈m ≤ 𝑢̄𝑖 ≤ 𝑈m, 𝑖 = 0,… , 𝑁 − 1
𝑥̄0 = 𝑥[𝑘], 𝑤̄𝑖 = 𝑤[𝑘 + 𝑖], 𝑖 = 0,… , 𝑁 − 1, (14)

where 𝐶1, 𝐶2 are row vectors defined such that 𝐶1𝑥 = 𝑧̇, 𝐶2𝑥 = 𝑧,
𝑅̄𝑖 is the extracted energy between the 𝑖th and (𝑖 + 1)th instants and
is calculated by trapezoidal integral, and 𝐸̄ is the total energy output.
This optimization is a quadratic program (QP). Note that although there
is no theoretical guarantee for its convexity, in practice, realistic WEC
parameters usually correspond to a convex QP [8], and there are tech-
niques to convexify the problem with additional penalty terms [22].
After the optimal control sequence is solved, only its first move 𝑢̄0
will be applied, and the above process is repeated at the next step. In
general, simulation of an MPC-controlled WEC system needs to solve a
series of ‘local’ optimization problems. The tuning strategy for the MPC
parameters is given in Appendix.

Note that since the goal is control evaluation rather than real-
time control, a ‘global’ version of MPC remains another alternative,
which solves a single optimal control problem over the entire operating
horizon. However, it is shown in the Appendix that global MPC is
computationally less preferable, due to its high optimization dimension,
and is therefore not considered in the remainder of this study.

3.3. Pseudo-spectral methods (Global horizon, frequency-domain-discretized
control)

To reduce the computational burden, the optimal control problem
can be discretized in a different way. A preliminary method can be
found in [23,24], where the system trajectory over the entire operating
horizon is represented by Fourier series, and the original constraints
re approximated with 2-norm constraints on Fourier coefficients, but

this treatment remains conservative [25]. The PS method marks an
important development in this direction. PS uses a wide range of
frequency components and handles the constraints at a series of time
instants, or ‘colocation’ points [10]. Compared with MPC, the PS for-
mulation suits the oscillating nature of WEC systems very well and
has seen a number of applications in co-design [5,11,26–28]. More
recently, a novel parameterization method, based on moments, has
been developed, which has the advantage of a guaranteed unique global
solution for nonlinear problems [29].
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The global PS method, implemented using WecOptTool [11], is
taken as the third benchmark. Using the Fourier series, the WEF can
be described by

𝑤(𝑡) =
𝑚∕2
∑

𝑖=1
𝑊a𝑖 cos(𝑖𝜔0𝑡) +𝑊b𝑖 sin(𝑖𝜔0𝑡), (15)

where 𝑊a𝑖 and 𝑊b𝑖 are the coefficients for sin and cos, and 𝑚 is the
number of components. Comparing Eqs. (9) and (15), one can easily see
that Eq. (9) includes frequency points 𝜔0, 2𝜔0,… , (𝑚∕2)𝜔0, containing
additional low- and high-frequency components outside the frequency
range 𝑛1𝜔0, (𝑛1+ 1)𝜔0,… , 𝑛2𝜔0 in Eq. (15) (𝑚 should be chosen such that
𝑚∕2 > 𝑛2). Hence, let 𝑊𝑖 = 𝐹e(𝑗 𝑖𝜔0)𝐴𝑖𝑒𝑗 𝜙𝑖 , so that 𝑊a𝑖 = |𝑊𝑖| cos(∠𝑊𝑖)
and 𝑊b𝑖 = −|𝑊𝑖| sin(∠𝑊𝑖) for 𝑖 = 𝑛1,… , 𝑛2, and 𝑊a𝑖 = 𝑊b𝑖 = 0 for
𝑖 < 𝑛1 and 𝑖 > 𝑛2. However, the sin and cos coefficients for 𝑧̇, 𝑧 and
𝑢 are generally non-zero when 𝑖 < 𝑛1 and 𝑖 > 𝑛2. This is because,
under hard constraints, the system variables include additional low-
and high-frequency components. Define the following row vector

𝛷⃗(𝑡) =
[

cos(𝜔0𝑡), sin(𝜔0𝑡),… , cos
(𝑚
2
𝜔0𝑡

)

, sin
(𝑚
2
𝜔0𝑡

)]

. (16)

Then, the system variables can be expressed in a vector form as 𝑤(𝑡) =
𝛷⃗(𝑡)𝑊⃗ , 𝑧̇(𝑡) = 𝛷⃗(𝑡)𝑉 , 𝑧(𝑡) = 𝛷⃗(𝑡)𝑍⃗, and 𝑢(𝑡) = 𝛷⃗(𝑡)𝑈⃗ , where 𝑊⃗ , 𝑉 , 𝑈⃗ ,
and 𝑍⃗ are row vectors containing the corresponding amplitudes. The
system equation can be expressed as

𝐺𝑉 = 𝑊⃗ + 𝑈⃗ , (17)

where 𝐺 is the (invertible) system matrix as derived in [10]. The con-
straints are imposed on a series of time instants 𝑡0, 𝑡1,… , 𝑡𝑁c

uniformly
distributed over [0, 𝑇 ], with (𝑁c + 1) being the number of collocation
points. Further defining the matrix 𝛷 = [𝛷⃗T(𝑡0),… , 𝛷⃗T(𝑡𝑁c

)]T, the opti-
mization problem can be formulated as the maximization of extracted
energy within constraints

max
𝑈⃗

− 𝑇
2
𝑈⃗T𝑉

s.t. − 𝑈m ≤ 𝛷𝑈⃗ ≤ 𝑈m,

− 𝑍m ≤ 𝛷𝑍⃗ ≤ 𝑍m. (18)

This problem is also a QP, but different from MPC in that it is a single,
global, optimization. The tuning strategy for the PS control parameters
is given in Appendix.

Note that PS control can also be developed into a receding-horizon
version, for real-time control. However, going from global PS control to
receding-horizon PS control entails additional complexities, compared
to the MPC case, and is unlikely to result in significant computational
saving. If Fourier series is used as the basis function, a windowing
function is needed to handle non-periodicity, and the control has a long
horizon length requirement [30], additional time-frequency domain
transformation, and more control parameters to tune [31]. Alterna-
tively, other more complicated basis functions are needed [32]. Hence,
receding-horizon PS control is not considered in this study. To the best
of the authors’ knowledge, all existing PS-based control co-design works
are based on global PS (e.g., [5,11,26–28]) which, therefore, is the ideal
benchmark for this study.

Finally, note that co-design requires evaluation of the long-term
expected power generation of a given sea state. This is achieved in two
stages: First, for each (periodic) WEF signal, simulated using Eq. (9),
the steady-state control performance is calculated. This means that
the effect of the initial state (the transients) should be eliminated.
The PS control described above focuses exclusively on the steady-state
control trajectories. For MPC, however, additional procedures, such as
discarding the initial phase of the MPC simulation, are needed; see the
Appendix for details. Second, multiple realizations of the WEF signal
are simulated by shuffling the phases in Eq. (9) [9], the corresponding
(steady-state) performance is evaluated, and then the mean value is
taken as the expectation of long-term power generation.
4 
Fig. 2. The fidelity-computation relationship of the controller continuum (for indicative
use, not to scale). Con. Opt. Perf.: constrained optimal performance.

3.4. The fidelity-computation map

The control performance evaluation approaches described above
show different features in fulfilling the goal of optimal control perfor-
mance evaluation. The linear or pseudo-linear methods are fast but are,
in general, non-optimal and/or non-constrained; their result deviates
from the real constrained optimum. MPC is optimal but computation-
ally demanding. This predicament constitutes the fidelity-computation
dilemma: Greater computation effort is needed for a more accurate
optimal constrained evaluation. In this sense, PS is an improvement on
MPC, since optimality (within the fidelity of the Fourier representation)
is maintained with faster computation, though not significantly faster.
The fidelity-computation characteristics of these methods are shown
conceptually by the blue balls in Fig. 2, with the current objective being
to propose an evaluator that is at the same time very accurate and very
fast, as shown by the red circle in Fig. 2.

3.5. A brief comparison of benchmarks

Here, an illustrative example of CC, MPC, and PS is presented. The
wave parameters are 𝐻s = 1 m, 𝑇p = 6 s, and 𝜔0 = 0.01 × 2𝜋 rad/s, so
the generated wave signal has a period of 100 s. The body is a vertical
cylinder with a radius of 2 m and a draught of 2 m, whose hydro-
dynamic parameters are calculated using NEMOH [33]. In this study,
for research purpose, the damping 𝑅0 is set to be proportional to the
square of body radius with a coefficient of 0.5 kNs/m3. The maximum
stroke is set to 𝑍m = 1 m. CC control follows Eq. (12), while the control
parameters of MPC and PS are tuned as in Appendix. MPC utilizes
the MATLAB function ‘quadprog’ to solve the quadratic programs; the
MPC simulation involves 1120 simulation steps and, at each step, a 60-
dimensional quadratic program with 240 inequality constraints needs
to be solved. PS is implemented using the WecOptTool [11], involving a
single optimization with 114 frequency components, 458 optimization
variables, 229 equality constraints, and 1824 inequality constraints.
The results are shown in Fig. 3.

It can be seen that MPC and PS achieve almost the same result.
The evaluated average power, with eight phase realizations, are 10.15
and 10.21 kW, respectively, which are very close, representing the
optimal constrained performance for the current wave signal. On the
other hand, CC reaches 14.52 kW, but the position is not constrained,
so this power cannot reflect the performance of a realistic WEC. The
numerical testing is performed on an i7-13700H @2.40 GHz processor,
and the average computation times are 8.2 s for MPC and 6.4 s for PS,
so PS is slightly faster, but their speeds are still of the same order. Note
that this is only one phase realization, and the above process should be
repeated multiple times to get statistically significant results.
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Fig. 3. The control trajectories of CC, MPC, and PS. The WEF signal can be decomposed into individual half waves, each is marked with an index.
𝑧

4. A new optimal control performance evaluator

4.1. The wave-by-wave idea

To circumvent the need for iterative optimization, the optimal
position-constrained profiles in Fig. 3 is re-examined. In fact, it can
be seen that the system trajectories during each half wave, i.e., each
positive or negative half cycle (each ‘crest’ or ‘trough’) of the WEF,
shows a clear characteristic:

• For small half waves, the constraint is inactive, and the velocity
is typically ‘in phase’ with the WEF, namely, they have the same
sign, the same peak time, and similar waveforms.

• For large half waves, the constraint is active, and the system
typically shows a ‘latching’ behaviour; during the starting and
ending phases, the velocity is zero and the position is kept at its
maximum; during the mid-phase, the body moves from one of its
maximal positions to the other, and the velocity profile is also ‘in
phase’ with the WEF.

This clear relationship between the WEF and optimal velocity can be
exploited, i.e., used as a priori knowledge for the control solution.
Specifically, it is assumed, as in [34], that:

• A1: The radiation convolution force can be represented using a
locally constant linear damping term (to be described later),

and it is further assumed, from the two observations above, that:

• A2: During each half wave, the body always moves in the same
direction as the WEF, either freely, i.e., without reaching the max-
imum positions (the constraint is inactive), or from one maximum
position to the other (the constraint is active).

Note that A1 and A2 naturally correspond to the well-known optimal
control condition (impedance-matching condition) under regular waves
with no constraints, and they are here extended to address constrained
cases under irregular waves. With these assumptions, each half wave
of the WEF corresponds to an independent process, and the energy
maximization problem of the long-term wave process can be transferred
into the problem of solving, for each half wave, an optimal velocity
profile that maximizes the energy during this half wave.

This is the fundamental basis of the WbW (wave-by-wave) method:
To decompose the WEF signal, according to its zero-crossing points,
into independent half waves and process each one separately. This
decomposition is illustrated in Fig. 3.
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4.2. Half-wave optimal control

The benefit of assuming half-wave independence is that the optimal
control solution becomes very simplified. To show this, the Pontryagin’s
method is used for analysis. Consider a positive half cycle (a ‘crest’) of
the WEF 𝑤(𝑡) during a time interval [0, 𝐷]

𝑤(𝑡) ≥ 0, 𝑡 ∈ [0, 𝐷]. (19)

The optimal velocity profile is the desired solution, so the system state
is the position 𝑧 and the control is the velocity 𝑣. The system equation
is

̇ (𝑡) = 𝑣(𝑡), (20)

while the control objective is to maximize the converted energy

∫

𝐷

0

(

𝑤(𝑡)𝑣(𝑡) − 𝑅local𝑣
2(𝑡)

)

𝑑 𝑡. (21)

Note that: (1) The energy is expressed as the difference between the
energy captured from the waves and the energy lost by the body,
similar to Eq. (11), and this expression avoids the PTO force term.
(2) Originally, the radiation effect is represented by the frequency-
dependent damping 𝑅a(𝜔) or the radiation kernel 𝑘𝑟(𝑡) in the time
domain, but here, a ‘local’ frequency, similar to the ‘instantaneous’
frequency in the Simple and Effective controller [34] is used. The local
frequency is identified as 𝜔 = 𝜋∕𝐷, so that the system damping can be
determined as

𝑅local = 𝑅0 + 𝑅a

( 𝜋
𝐷

)

. (22)

It is easy to see that 𝑅local is consistent with the exact model under
regular waves while, under irregular waves, it remains an effective
approximation [34].

The control solution depends on whether the position constraint is
inactive or active. In the first case, the control is unconstrained. The
Hamiltonian is
𝐻(𝑤(𝑡), 𝑣(𝑡), 𝑝(𝑡)) = 𝑤(𝑡)𝑣(𝑡) − 𝑅local𝑣

2(𝑡) + 𝑝(𝑡)𝑣(𝑡), (23)

where 𝑝(𝑡) is the covariant. The optimal condition is
𝜕 𝐻
𝜕 𝑣 = −2𝑅local𝑣(𝑡) +𝑤(𝑡) + 𝑝(𝑡) = 0, (24)

In addition to Eq. (20), the covariant satisfies
𝜕 𝐻
𝜕 𝑧 = −𝑝̇(𝑡) = 0. (25)

Since the terminal time is fixed and the terminal state (position) is
unconstrained, have

𝑝(𝐷) = 0. (26)

So, 𝑝(𝑡) ≡ 𝑝(𝐷) = 0 for 𝑡 ∈ [0, 𝐷], and

𝑣∗(𝑡) = 𝑤(𝑡)
. (27)
2𝑅local
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This is consistent with the well-known optimal condition: The velocity
s proportional to the WEF with a coefficient of 2𝑅local. Note that since
𝑤(𝑡) ≥ 0, it is clear that there is 𝑣(𝑡) ≥ 0 as well.

For the second case, the body moves unidirectionally from the
negative position limit to the positive one, so
𝑣(𝑡) ≥ 0, 𝑡 ∈ [0, 𝐷]. (28)

According to Pontryagin’s maximum principle, condition (24) is now
eplaced by

𝑣∗(𝑡) = argmax
𝑣≥0

𝐻(𝑤(𝑡), 𝑣, 𝑝(𝑡)). (29)

Since the terminal state (position) is now fixed, there is no boundary
ondition for 𝑝(𝑡). Recall that 𝑝̇(𝑡) = 0, so let 𝑝(𝑡) ≡ −𝑃 , 𝑡 ∈ [0, 𝐷] with
𝑃 constant. It is easy to see, from Eqs. (23) (28) (29), that the optimal
velocity satisfies

𝑣∗(𝑡) =
{ (𝑤(𝑡)−𝑃 )

2𝑅local
, if 𝑤(𝑡) − 𝑃 > 0

0, if 𝑤(𝑡) − 𝑃 ≤ 0.
(30)

Since the total distance the body moves is 2𝑍m, 𝑃 must satisfy

∫

𝐷

0
𝑣∗(𝑡)𝑑 𝑡 = 2𝑍m. (31)

The optimal velocity profile can be solved by combining Eqs. (30) and
31). This solution has the following features: When the WEF is below a
hreshold 𝑃 , the velocity is maintained at zero; otherwise, the velocity
s proportional to the difference between the WEF and the threshold,
lso with a coefficient of 2𝑅local. This is exactly the latching behaviour
bserved from Fig. 3.

4.3. Analytical solution

The solution in Section 4.2 still depends on the specific shape of the
EF. To proceed to an analytical solution, 𝑤(𝑡) is approximated with a

inusoidal function, namely,

𝑤(𝑡) = 𝑊 sin
( 𝜋
𝐷
𝑡
)

, 𝑡 ∈ [0, 𝐷]. (32)

When the position constraint is active, let 𝛼 = ar csin(𝑃∕𝑊 )∕𝜋, there is
∈ [0, 0.5], and the optimal velocity is

𝑣∗(𝑡) =
⎧

⎪

⎨

⎪

⎩

𝑊
2𝑅local

(

sin
(

𝜋
𝐷 𝑡

)

− sin (𝛼 𝜋)
)

, 𝑡 ∈ [𝛼 𝐷 , (1 − 𝛼)𝐷]

0 , ot her wise.
(33)

Then, the total distance the body moves is

∫

𝐷

0
𝑣∗(𝑡)𝑑 𝑡 = 𝑊 𝐷

2𝑅local

[

(2𝛼 − 1) sin(𝛼 𝜋) + 2
𝜋
cos(𝛼 𝜋)

]

= 𝑊 𝐷
2𝑅local

𝑓 (𝛼). (34)

It is easy to see that, when 𝛼 = 0, the displacement reaches its
aximum. If this maximum does not exceed the position constraint,

.e., 𝑓 (0)𝑊 𝐷∕(2𝑅local) = 𝑊 𝐷∕(𝜋 𝑅local) ≤ 2𝑍m, the constraint is deemed
o be inactive. Otherwise, the constraint is active, and 𝛼 should satisfy
 𝐷 𝑓 (𝛼)∕(2𝑅local) = 2𝑍m. In summary,

𝛼 =

⎧

⎪

⎨

⎪

⎩

𝑓−1
(

4𝑅local𝑍m
𝑊 𝐷

)

, if 𝑊 𝐷
𝜋 𝑅local

> 2𝑍m

0, if 𝑊 𝐷
𝜋 𝑅local

≤ 2𝑍m,
(35)

where 𝑓−1 is the inverse function of 𝑓 , and it is easy to verify that 𝑓
as a unique inverse when 𝛼 ∈ [0, 0.5]. The variable 𝛼 can be viewed

as a constraint index, for which a higher value corresponds to a tighter
constraint. Finally, the energy 𝐸 during the half wave is
𝐸 = 𝐸(𝑊 , 𝐷) = 𝑊 2𝐷

8𝑅local

[

1 − 2𝛼 + 1
𝜋
sin(2𝜋 𝛼) + (4𝛼 − 2) sin2(𝛼 𝜋)

]

. (36)

Additionally, the system trajectory, corresponding to the half-wave
control solution, is illustrated in Fig. 4(a), where the PTO force profile
s calculated from the optimal velocity using the local system model.
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It can be seen that the ‘latching’ behaviour of the control solution
gives a discontinuous PTO force profile. However, note that the aim
here is to evaluate the control performance, rather than to develop
a real-time controller, so the smoothness of control action is not the
rimary concern. In real-time control (possibly following a co-design

optimization stage), MPC or receding-horizon PS controllers can be
applied to achieve more smooth control actions.

In summary, by adopting a sinusoidal approximation, the half wave
waveform is reduced to two characteristic parameters, i.e., the ampli-
tude 𝑊 and the duration 𝐷 (half the period), and the energy can be
nalytically calculated using Eqs. (35) and (36). As a special case, when
nconstrained, 𝛼 = 0, and the average power is 𝐸∕𝐷 = 𝑊 2∕(8𝑅local),
hich is consistent with the optimal condition [35].

4.4. Average power calculation

With the very simple energy function described by Eqs. (35) and
(36), it is straightforward to calculate the average power: A number
of WEF signals are generated using Eq. (9), the half-wave parameter
samples {𝑊𝑖, 𝐷𝑖}

𝑁s
𝑖=1, with 𝑁s being the number of half waves, are

recorded, the energy for each sample are calculated, and finally, the
esults are averaged. The average power can be expressed as

𝑃 =
∑𝑁s

𝑖=1 𝐸(𝑊𝑖, 𝐷𝑖)
∑𝑁s

𝑖=1 𝐷𝑖

. (37)

This straightforward WbW calculation process consists of two fun-
damental steps: (1) Get the 𝑊 –𝐷 distribution and (2) calculate the
ptimal energy for each 𝑊 –𝐷 sample. In this sense, the above method
s termed WG/A (Wave Generation with Analytical solution).

Alternatively, an analytic model of the 𝑊 –𝐷 joint distribution, such
as the Longuet-Higgins (LH) model [36], can be employed for the
irst step. Denote the spectrum of the WEF as 𝑆wf (𝜔), with 𝑆wf (𝜔) =
𝐹e(𝑗 𝜔)|2𝑆(𝜔), and define

𝑚𝑛 = ∫

∞

0
𝜔𝑛𝑆wf (𝜔)𝑑 𝜔, (38)

𝜈 =
𝑚0𝑚2

𝑚2
1

− 1, (39)

LH = 1
8
(2𝜋)−

1
2 𝜈−1

(

1 + (1 + 𝜈2)−
1
2
)−1

, (40)

and then, the joint density 𝑝LH(𝑊 , 𝐷) is

𝑝LH(𝑊 , 𝐷) = 𝑐LH
(𝑊
𝐷

)2
exp

{

−𝑊
8

(

1 + 𝜈−2(1 −𝐷−1)2
)

}

. (41)

Now, the average power can be calculated by integrating over the
probability distribution

𝑃 =
∬ 𝑝LH(𝑊 , 𝐷)𝐸(𝑊 , 𝐷)𝑑 𝑊 𝑑 𝐷

∬ 𝑝LH(𝑊 , 𝐷)𝐷 𝑑 𝑊 𝑑 𝐷 . (42)

This method is termed LH/A (LH model with Analytical solution).
However, unlike the WG approach with no assumption on the wave
pectrum, the LH model is based on a narrow-banded assumption and
annot represent the full shape of the spectrum, so may be prone
o deviate from the real distribution [37], and this will be tested in
ection 5.1.3.

An illustration of the LH/A method, based on the case study in
Section 3.5, is given in Fig. 4(b) and (c). The WAFO toolbox [38] is
sed for the basic probability calculations. It can be seen that the half-
ave amplitude and duration of the WEF have a clear correlation; on

the other hand, the energy function shows that a larger and longer
wave generally corresponds to higher energy and tighter constraints,
although they are also affected by the frequency-dependent radiation
damping. The average power estimated by LH/A is 9.98 kW, while
recall that the average results obtained by MPC and PS are 10.15 and
10.21 kW, respectively; this level of fidelity is already sufficient for a
quick evaluation of the WEC design parameters and their dependence
on the control. The computation time is about 0.01 s, thousands of
times faster than MPC (8 × 8.2 s) and PS (8 × 6.4 s) since no itera-
tive optimization is required for LH/A. This result already shows the
computational advantage of the WbW method.
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Fig. 4. An illustration of the LH/A method. (a) The half-wave optimal control profile in Section 4.3. (b) The surface and contours of the half-wave energy function Eq. (36) and
the contours of the constraint index Eq. (35). With the distribution and energy function, the average power can be calculated with Eq. (42). (c) The surface and contours (enclosing
20%, 50%, . . . , 99% probability) of the joint density of half-wave amplitude and duration of the WEF based on the LH model.
4.5. The generalized WbW method

The above analytical solution has focused only on the constraint of
maximum stroke. For more general constraints, such as the maximum
PTO force, no analytical solution exists, and one has to resort to a
numerical solution. However, the idea of calculating the performance
by regarding each half wave of the WEF as an independent process
is still useful in attempting to generalize the original WbW method.
Specifically, it is proposed that, for each 𝑊 –𝐷 pair, the half-wave
energy can be calculated by solving the optimal control problem for
the corresponding regular wave case, namely, the regular wave with an
amplitude of 𝑊 and a period of 2𝐷, which can be achieved using PS
control. Compared with the analytical energy function, the numerical
method is slower, but compared with the original PS that addresses the
complete evaluation horizon, it is significantly faster. This is due to the
fact that, under regular waves, the number of sinusoidal components
and the number of time instants to impose constraints are both very
much reduced; in other words, the optimization problem contracts and
can be solved rapidly. Hence, it is profitable to use PS control in a
wave-by-wave manner. Finally, by combining the numerical solution
with either a data distribution or an LH model, two further variations
can be naturally obtained: WG/N and LH/N (Wave Generation or LH
model with Numerical solution).

5. Case studies

5.1. Verification of wave-by-wave assumptions

Here, the initial focus is on the assumptions taken in the WbW
method, including the use of local damping, the wave-by-wave inde-
pendence, and the narrow-bandedness of the LH model. The studied
body parameters are the same as in Section 3.5.

5.1.1. Exact radiation convolution vs. Local damping
The first test is to show how much evaluation error can be caused

by using local damping instead of the exact radiation convolution. A
𝑊 –𝐷 grid is considered and, for each grid point, the optimal half-
wave energy is solved using (i) the regular-wave PS solution with an
exact radiation kernel and (ii) the analytical energy function Eqs. (35)
and (36) with local damping. This test is repeated by changing the
maximum stroke 𝑍m and the constant system damping 𝑅0, respectively.
Note that 𝑅0 is determined by the mechanical part of the WEC, and so
can vary significantly across different devices. In this study, for research
purposes, an intuitive assumption is taken in which 𝑅0 is proportional
to the device cross-sectional area, with a coefficient of 0.5 kN⋅s/m3. The
discrepancy is defined as the relative difference (percentage) between
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the results. The testing results, as well as the value of 𝑅0 compared
to the radiation damping, are shown in Fig. 5. It can be seen in each
sub-figure that, when either the WEF amplitude 𝑊 or duration 𝐷 is
large enough, the discrepancy occurs. This is because for a larger wave
the constraint becomes active, and the dynamic process cannot be fully
described by a fixed damping. Consequently, as the maximum stroke
increases, the discrepancy-free region is expanded. Under different
𝑅0 values, similar observations can be made, and the error resulting
from local damping is generally below 5% under the original 𝑅0 and
further decreases to be less than 4% and 2% as 𝑅0 increases. This is
also reasonable, since as the constant part of the frequency-dependent
damping increases, the variant part, corresponding to the memory
effect of the radiation kernel that cannot be grasped by local damping,
becomes less influential. In summary, using simple local damping can
give a reasonably accurate evaluation result.

5.1.2. Coupled waves vs. Independent individual waves
The second study investigates how much power evaluation error

can result from the assumption of wave-by-wave independence. A long-
term WEF signal is first generated, and then the average power is
calculated using (i) a PS solution that addresses the entire process and
(ii) the WG/N method that calculates each half wave independently.
This test is repeated for different values of 𝐻s and 𝑇p, and for each 𝐻s–
𝑇p point 16 phase realizations, and three different values of maximum
stroke 𝑍m; the results are shown in Fig. 6. Although there is no clear
relationship between the wave parameters and the discrepancy, it
can be seen that the error is generally below 3%, and the maximum
stroke setting does not have a significant impact on the discrepancy
level. Hence, wave-by-wave independence is a reasonable and effective
approximation for power evaluation.

5.1.3. Wave signal generation vs. LH model
The third study investigates whether the analytical LH model gives

a result that is in accordance with the actual data distribution obtained
from a Bretschneider spectrum. The body radius is 2 m and the draught
is 2 m, the sea state parameters are 𝐻s = 1 m and 𝑇p = 6 s, and the
results are shown in Fig. 7, which shows that the data distribution has
faster decay at large durations, and its peak regions are more inclined
towards small waves. This is due to the fact that the LH model is
based on a narrow-banded assumption and uses only a few parame-
ters of the WEF spectrum, so it cannot incorporate the full spectral
shape [36,37]. On the other hand, while an exact distribution can
be calculated numerically from the spectrum [39], such an approach
has a considerable computational requirement, which runs counter to
the intention of speeding up the evaluation process. Hence, only the
WG and LH methods are further considered in this study, and the WG
method is generally more reliable.



Z. Lin et al. Renewable Energy 239 (2025) 121974 
Fig. 5. Discrepancy of average power calculation between using the exact radiation convolution kernel and using a local radiation damping (body radius 3 m, draught 2 m). The
values of 𝑅0 and radiation damping are also illustrated.
Fig. 6. Discrepancy of average power calculation between solving the entire process as a whole and solving each half wave independently (body radius 3 m, draught 2 m).
Fig. 7. Comparison between the WG method (data distribution) and LH model.
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5.2. Comparison between the four variations of the WbW method

Now, the four variations of the WbW method: WG/A, LH/A, WG/N,
and LH/N are compared to examine their evaluation fidelity and high-
light their features. The four methods are used to estimate the average
power of the WEC device, documented in Section 3.5, under a number
of different sea states. The selected sea states come from real measured
data of Wheat Island in the East China Sea [40]. The number of
occurrences of different sea states is shown in Fig. 8 (left). From a
wave energy perspective, a selected wave range is determined, which
excludes too-small and too-large waves. The corresponding distribution
of wave energy density, which is a linear function of 𝐻2

s 𝑇p [41], is
shown in Fig. 8 (right). Then, nine representative sea states covering
the selected range are now chosen, as also shown in Fig. 8 (right). The
body radius is 2 m and the draught is 2 m; the maximum stroke is
1.5 m. The evaluation results of the four methods are compared to the
full PS solution, which is the constrained optimum, and are shown in
Fig. 9.
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Fig. 8. Wave data of Wheat Island, East China Sea, 2021. Left: the number of occurrences of each sea state. Right: the wave energy distribution. The selected nine sea states are
(𝐻s, 𝑇p) = (0.6, 4), (0.6, 5), (1.0, 5), (0.6, 6), (1.0, 6), (1.4, 6), (1.0, 7), (1.4, 7), (1.0, 8), the units are (m) and (s), respectively.
The following two observations can be made. On the one hand, the
results of the WG methods (WG/A and WG/N) are closer to PS than
the LH methods (LH/A and LH/N), which exhibit a certain underesti-
mation. This can be explained by the deviation of the LH model from
the data distribution. On the other hand, either with WG or LH, the
discrepancy between the analytical and numerical solutions (i.e., WG/A
vs. WG/N, and LH/A vs. LH/N) is generally small. This means that
the error caused by the LH distribution is the main factor affecting
the evaluation fidelity, while the use of local damping has a smaller
contribution to the power evaluation error.

The average computation times are shown in Fig. 10. It can be seen
that MPC and PS have the heaviest computational burden while, in
contrast, the computation times of the analytical WbW methods (WG/A
and LH/A) are almost negligible. Note that LH/A is generally faster
than WG/A, since when using an analytical energy function, the main
computational load comes from the wave signal generation. However,
both methods are already fast enough for co-design, so WG/A, with a
more accurate evaluation, remains the better choice. On the other hand,
the generalized WbW methods (WG/N and LH/N), although adopting
a PS solver, are still much faster than the original PS. Hence, it can
be concluded that the WbW method is hundreds of times faster than
PS, under maximum stroke only (where WG/A is utilized), and several
times faster than PS when a maximum PTO force is also included
(where WG/N is utilized).

5.3. Comprehensive validation of evaluation fidelity

To fully validate the evaluation fidelity, four different cylindrical
bodies with radii and draughts of (1,1), (2,1), (2,2), and (3,2) m are
considered and denoted as Bodies 1–4; their parameters are listed in
Table 1. The body size is chosen based on the fact that the dominant
𝑇p of the sea area is 4–5 s, which corresponds to a wavelength range
of 20–40 m, so the body diameter should not be too large compared to
the wavelength. Since the maximum stroke and maximum PTO force
are highly correlated with the device size, a ‘maximum stroke factor’,
denoted as 𝑟z, is defined as the ratio of 𝑍m to the body draught, and
a ‘maximum force factor’, denoted as 𝑟u, is defined as 𝑈m∕(𝐾 𝑍m). In
this way, six constraint cases are tested, where 𝑟z = [0.75, 0.5] and
𝑟u = [∞, 0.75, 0.5]. The results are shown in Fig. 11. It can be seen that,
for the force-unconstrained case (𝑟u = ∞), the accuracy of WG is higher
than LH, and the evaluation error is limited to 5% by using WG and 6%
by using LH. Similarly, when the PTO force constraint is introduced,
the error of WG is below 5%, lower than LH, which is generally below
10%. Hence, the results confirms again that, in the WbW method, it is
better to obtain the half-wave parameter distribution using WG rather
than LH. The best choice is to use WG/A for the position constraint only
and WG/N for general constraints, and the overall evaluation error is
less than 5%.
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Table 1
Parameters of the examined bodies.

Parameters Body 1 Body 2 Body 3 Body 4
Radius (m) 1 2 2 3
Draught (m) 1 1 2 2
Resonant Frequency (rad/s) 2.51 2.21 1.78 1.66

5.4. Control co-design example

Finally, an application example of the proposed evaluator in WEC
geometry control co-design. For simplicity, the design parameter is the
size of the body, which is defined by its radius. It is assumed that the
draught is half the radius and that the maximum stroke equals the
draught. The radius range chosen is 1–5 m, on an equally spaced grid
with an interval of 0.25 m. For each radius value, the annual average
power, using CC, PS, and the WbW method WG/A, is evaluated. To
do this, the average power for each of the total 99 sea states in Fig. 8
(right) is computed, for eight realizations of each sea state, and the
results are further averaged to get annual values. The design objective
function is defined as the annual average power per characteristic
length (the cube root of the submerged volume) [42]. The results are
shown in Fig. 12.

It is easy to see the difference between the use of an unconstrained
optimal controller (CC) and a constrained optimal controller (PS/MPC)
in this co-design exercise. The CC result suggests that the body size
should be as small as possible, since it assumes that the body position
is unconstrained, with consequent unrealistic oscillation amplitudes. In
other words, a device co-designed with a CC controller may not achieve
the performance promised by the co-design process and, in turn, the
device size is non-optimal, since it fails to consider the constraints.
In contrast, by taking the maximum stroke into account, PS and MPC
give an optimal size range that is between 2–3 m, which corresponds
to the actual achievable performance. It is also worth noting that, in
Fig. 12, the CC and PS/MPC curves converge as the size increases, since
the required oscillation for a large device is small, so the constraints
are inactive. Finally, the proposed WbW evaluator gives an optimal
size range very close to PS/MPC, successfully fulfilling the goal of
accurate and fast control co-design. To compute the performance curves
in Fig. 12, the PS-based co-design calculation consumes more than
13 h, while the WbW method uses less than five minutes, which is
a significant computational superiority. Note that if constraints other
than the maximum displacement are to be considered, the numerical
WbW evaluator needs to be used, with a much less, but still significant,
computation acceleration than PS.

It should be noted that this study focuses on the control evaluator,
rather than the design optimizer. The above results are based on a
one-dimensional design case using parameter sweep, to illustrate the
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Fig. 9. Average power, for the nine sea states documented in Fig. 8, estimated by PS/MPC, WG/N, WG/A, LH/N, and LH/A. Note that MPC and PS give identical results, so only
the PS results are presented and denoted as ‘PS/MPC’.
Fig. 10. Average computation times of MPC, PS, WG/A, LH/A, WG/N, and LH/N, with
each of MPC, PS, WG/A and WG/N evaluated for eight sea-state realizations.

evaluation efficacy. The WbW method, however, can be combined with,
e.g., derivative-based optimizers, to address high-dimensional design
problems, which is for future work.

6. Conclusion

The optimal constrained control performance of WECs can be evalu-
ated in a simple way. On the one hand, by adopting the approximations
of local radiation damping and wave-by-wave independence, an ana-
lytical (A) optimal control solution can be derived for each half wave
of the WEF under maximum stroke limitation. On the other hand, the
joint distribution of half-wave amplitude and duration can be obtained
using either wave signal generation (WG) or the LH model (LH). The
combination of the half-wave control solution and half-wave parameter
distribution forms the WbW method, yielding an easy calculation of the
average power. If a maximum PTO force is also specified, the WbW
method can be generalized by incorporating a PS control calculation
to obtain a numerical (N) solution. In summary, four WbW evaluator
variations can be obtained: WG/A, LH/A, WG/N, and LH/N.

The assumptions taken in the WbW method are verified to be
effective for performance evaluation. Using a local radiation damping
parameter instead of the exact radiation convolution kernel yields only
a limited error, as does using a wave-by-wave-separated calculation,
rather than employing a long-term wave calculation. However, in
obtaining the half-wave distribution, the LH model exhibits a certain
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deviation compared with the exact data distribution, and consequently,
it causes the main error in the final average power estimation. So, it
is recommended to use WG/A for maximum stroke only, and WG/N
for general constraints. The WbW evaluator yields accurate and fast
evaluation results on multiple bodies, across multiple sea states, and
multiple constraints. Compared with PS, the overall evaluation error
of the WbW method can be kept below 5%, while the computational
speed is orders of magnitude faster under the stroke constraint (where
WG/A is utilized) and several times faster when a PTO force constraint
is further involved (where WG/N is utilized), so the WbW methods can
now be accurately located on the controller continuum in Fig. 2 to get
Fig. 13. In addition, the WbW method can avoid the difficulty of control
tuning in MPC and PS, as described in Appendix. In co-design of WECs,
it is crucial to use an optimal constrained controller. An unconstrained
controller such as CC will yield an unrealistic design result. By contrast,
the WbW evaluator gives almost the same design result as PS, one of
the ideal optimal constrained control options, but the computation time
is reduced from over 13 h to less than five minutes.

Some limitations of this study are worth noting. First, the focus
is on a heaving point-absorber WEC, frequently used in WEC control
research, and possible uses of the WbW technique in other WEC types
is a direction for future work. Second, the results are limited to the
considered system model (linear Cummins’ equation) and constraints
(displacement and PTO force). However, the generalized WbW method
can naturally be applied to address, e.g., nonlinear models and con-
straints such as the maximum PTO power. Third, from its working
principle, the WbW method is currently limited to single-body cases,
and handling WEC array problems would require further, fundamental,
extensions of the technique. Moreover, the computational performance
of both MPC and PS relies heavily on control parameter tuning, and the
current results are based on a specific control tuning strategy. However,
given the extent of tuning consideration, it is deemed a fair comparison
for the WbW strategy. Finally, the co-design case study provided in
the paper is a one-dimensional parameter sweep. Advanced outer-loop
optimizers were not explored with the control evaluator. Note that a
numerically sensitive control evaluator could cause certain undesirable
outcomes in co-design optimization.

In addition, in addition to control evaluation, co-design also in-
volves computational complexities in the calculation of hydrodynam-
ics. Surrogate models are an additional tool to tackle, uniformly, the
computational challenge of WEC co-design.
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Fig. 11. Comprehensive fidelity testing results (discrepancy in absolute value). When the PTO force is unconstrained, the results are obtained using WG/A and LH/A, otherwise
WG/N and LH/N are employed. The missing bars mean no feasible control solution exists.
Fig. 12. Co-design results: the optimal device size range in terms of annual average
power per characteristic length. CT: computation time.
11 
Fig. 13. The fidelity&capability-computation relationship of the controller continuum
including the WbW methods (for indicative use, not to scale). Con.: constrained.
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Appendix. Tuning of the benchmark MPC and PS control

The control tuning strategy for both MPC and PS, for co-design,
is a challenging task, due to the following factors: (1) there exist
multiple control parameters for both controllers, (2) there are a wide
range of WEC scenarios (i.e., body geometries, sea states, and con-
straint settings) to be examined in co-design, and (3) the relationship
between control parameters and control evaluation accuracy is different
in different WEC scenarios. The control parameters should be optimized
to maintain the accuracy under all WEC scenarios with the smallest
computational burden. To this end, ideally, one needs to first conduct
a sensitivity analysis for the control parameters. However, it would
be meaningless to conduct the sensitivity analysis for all possible
combination of WEC geometries, sea states, and constraints, since the
corresponding computational burden is much heavier than the co-
design exercise itself. Here, a simplified tuning strategy is proposed,
for both MPC and PS, based on some ‘extreme’ scenarios involved in
this study:

• For the body size, only the smallest body with a radius of 1 m
(Body A1) and the largest body with a radius of 5 m (Body A2)
are considered. The body draught is assumed to be half the radius.

• For the sea state, only the mildest sea state with 𝐻s = 0.6 m and
𝑇p = 4 s (SS A1) and the most energetic sea state with 𝐻s = 1.4 m
and 𝑇p = 7 s (SS A2) are considered.

• For the constraints, only the tightest constraint with 𝑍m set to half
of the body draught (Con. A1), and the loosest constraint with 𝑍m
set to the body draught (Con. A2), are considered. The PTO force
is assumed unconstrained.

Hence, there are eight possible combinations of body size, sea state,
and constraint settings. A sensitivity analysis of the control parameters
for each scenario will be conducted, and it is expected that the result
can be somewhat ‘representative’ for other scenarios as well.

As the basic setting, each run of control evaluation corresponds to a
100-second operation, and the wave excitation force signal is generated
using a Fourier series with a fundamental frequency of 𝑓0 = 𝜔0∕(2𝜋) =
0.01 Hz (with a period of 100 s). The Fourier series is truncated at the
frequency where the wave excitation force spectral density is less than
0.5% of the maximum value.
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Fig. A.14. Relationship between MPC performance and 𝑁 in eight extreme scenarios.

Fig. A.15. Relationship between MPC evaluation and 𝑇pr e in eight extreme scenarios.

A.1. MPC tuning

MPC, for co-design, has two main parameters to tune, which are
the sampling period 𝑇s and the number of prediction steps 𝑁 (so the
prediction time horizon is 𝑁 𝑇s). As a good standard for simulation,
the sampling period is set according to the cut-off frequency 𝑓c of
the system (which is defined as the frequency at which the force-
to-velocity response amplitude decreases to 1∕

√

2 of its maximum
value), in order to maintain discretization accuracy. In this study, 𝑇s
is chosen to satisfy 𝑇s < 1∕(20𝑓c) and, within this upper bound, 𝑇s
is set to be the maximum value within the set {0.1,0.125,0.16,0.2} s,
in order to keep the total number of simulation steps as an integer.
Then, the relationships between 𝑁 and MPC performance, under the
eight scenarios considered, are shown in Fig. A.14. Accordingly, since
the MPC computational burden increases with 𝑁 , 𝑁 = 60 is selected
throughout the co-design study to give accurate evaluation without
involving excessive computation.

In addition, since co-design requires a representative power assess-
ment, the steady-state performance of MPC should be assessed, and any
effects of the initial state should be eliminated. Hence, the simulation
should be started before the 100-second evaluation horizon, with a time
interval for the system to reach steady state. This interval is denoted as
𝑇pr e. The MPC evaluation result, with different 𝑇pr e values, is shown
in Fig. A.15. It can be seen that a small 𝑇pr e can lead to significant
deviation from the accurate evaluation. Hence, 𝑇pr e is selected to be 40
s throughout the study; the total simulation time for MPC is therefore
140 s.

A.2. PS control tuning

PS control has two main parameters to tune, which are the number
of frequency components 𝑁f = 𝑚∕2 (with a fundamental frequency
of 𝑓 = 0.01 Hz, the same as the wave spectrum) and the number
0
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Fig. A.16. Body displacement profile solved by PS under different 𝛼c.

Fig. A.17. Relationship between PS performance and 𝛼f in eight extreme scenarios.

Table A.2
Evaluation results and computation time of receding-horizon MPC and global MPC
(body radius 2 m, 𝐻s = 1 m, 𝑇p = 6 s, 𝑍m = 1 m).

Receding-horizon MPC Global MPC

Evaluation Computation time Evaluation Computation time

10.53 kW 6.11 s 10.53 kW 11.60 s

of collocation points (𝑁c + 1) to apply the constraints, which should
be uniformly distributed over the 100-second time range (with an
interval of 1∕(𝑁c𝑓0) s). In principle, 𝑁c should be set small to reduce
the computational burden (number of constraints in PS optimization);
meanwhile, 𝑁c should provide a sufficiently dense time grid, according
to the highest frequency component of system response, which is 𝑁f𝑓0,
to avoid significant violation of the constraints. The ‘collocation point
ratio’ 𝛼c is defined as the ratio between the period of the highest-
frequency component, which is 1∕(𝑁f𝑓0), to the interval of collocation
points, which is 1∕(𝑁c𝑓0), and there is 𝑁c = 𝛼c𝑁f ; a larger 𝛼c means
a denser collocation point distribution. For the optimized 𝑁f (to be
discussed later), the effect of 𝛼c on the control trajectory is shown
in Fig. A.16, and similar observations can be made for other WEC
scenarios. Accordingly, 𝛼c = 4 is selected throughout this study, with
the remaining control variable being 𝑁f .

One of the PS control features is that high-frequency components
outside the wave excitation force spectrum are involved. Hence, let 𝑁f
be dependent on the wave excitation force spectrum cut-off frequency
𝑁wc = 𝑛2𝜔0, and define 𝑁f = 𝛼f𝑁wc. The relationship between 𝛼f
and PS control performance, under the considered eight scenarios, is
shown in Fig. A.17. It can be seen that, similar to the MPC case,
since a larger 𝛼 results in a heavier computational burden, 𝛼 = 3 is
f f
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selected throughout this study, to strike a balance between accuracy
and computation.

A.3. Global MPC for control evaluation

Additionally, as mentioned in Section 3.2, another alternative to
receding-horizon MPC is global MPC. Based on the 𝑇s, 𝑁 , and 𝑇pr e
selected in Appendix A.1, global MPC directly solves the control prob-
lem over the entire operating horizon, which is (𝑇pr e + 100 + 𝑁 𝑇s)
s. An illustrative comparison between the two MPC approaches, in
a specific WEC scenario, is presented in Table A.2. It can be seen
that the evaluation results are the same, while global MPC suffers
from a much longer computation time, due to its high optimization
dimension. Similar results can be obtained in other scenarios. Hence,
receding-horizon MPC (referred to as ‘MPC’) has been used in this
study.
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