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A B S T R A C T

In this study, the combined wind and wave energy potential assessment is presented for various locations in
European coastal waters. The objective is to investigate the feasibility of satellite altimetry-based assessments of
combined wind/wave renewable energy potential on the European shelf. The study is motivated by the potential
reduction in energy supply variability by combining wind and wave. The method consists of using a homoge-
nized multi-mission altimeter database available by the European Space Agency Sea State Climate Change
Initiative (Sea_State_cci) that comprises 26 years of data, from January 1991 to December 2018, that allows
extending the time range and spatial coverage to estimate site wind and wave power densities. An empirical
model is used to estimate the wave energy period from the altimeter Ku band significant wave height and radar
backscatter coefficient required to compute the wave power density. The results show that wind/wave energy is
relatively correlated in the Mediterranean but not in the North Atlantic sites studied. Thus, the Western North
Atlantic sites are the most adequate places for wind and wave farms, from the point of view of combined
exploitation.
The different characteristics of the studied sites show some correspondence between variability and mean

wave power, which is an essential input to a marine renewable energy strategy in any jurisdiction. The level of
overall variability decreases with an increase in mean wave power, related to the higher power swell waves are
not highly correlated with the local wind.

1. Introduction

Wave energy conversion technology has significant benefits to soci-
ety in providing an additional (currently untapped) sustainable energy
source that can contribute to the renewable energy mix. Oceans are a
significant renewable energy resource (Pontes, 1998) that can
contribute to the energy transition towards a green economy. With a
drive to 100 % renewable energy, it is important that complementarity
between individual renewable (including marine) energy resources, so
that the most resilient forms of renewable energy, and combinations of
renewable sources are developed.

The intermittency and efficiency of the supply from renewable en-
ergy sources is a major concern in the shift from a fossil fuel to a
renewable energy powered grid. The combination of offshore wind with

wave energy can mitigate these concerns by reducing the variability and
downtime of the power supply and increasing its efficiency (Astariz and
Iglesias, 2016; Fusco et al., 2010; Stoutenburg and Jacobson, 2010).
Overall, co-located offshore wind turbines and wave energy converters
can significantly increase the competitiveness of marine renewable en-
ergy, by achieving reduced energy costs, improved power output vari-
ability and security and a consistent and reliable delivery of renewable
power (Astariz and Iglesias, 2017; Stoutenburg and Jacobson, 2010).

The west coast of Europe shows high wave energy potential due to
the high energy swells generated by the extra-tropical cyclones that
regularly cross the North Atlantic (Gallagher et al., 2014; Iglesias and
Carballo, 2010; Ponce de León and Bettencourt, 2021; Mota and Pinto,
2014). In theWestern Mediterranean, the highest wave energy density is
found to the North of the Balearic Islands and diminishing towards the
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south due to the sheltering effect and changes in the wave direction.
There is a large seasonal variation in the energy flux, being 6 times
larger in winter than during the summer (Ponce de León et al., 2016).

Wind energy is the leading form of renewable energy in Europe
(deCastro et al., 2019). Offshore winds are advantageous when
compared to onshore wind farms because of higher wind speeds in the
ocean and the availability of larger areas (deCastro et al., 2019),
although the level of the resource varies greatly with location in the
European coasts (Carvalho et al., 2014, 2017; Kalogeri et al., 2017;
Soukissian et al., 2017)

To date, significant effort has gone into the individual mapping of
wind and wave renewable energy resources, with less attention focused
on their temporal correlation. The temporal correlation of wind and
wave energy significantly affects the combined wind and wave energy
resource extraction. Low temporal correlation between wind and wave
resources leads to less variable power output and to more stable and
predictable conditions, reducing the downtime periods (Martini et al.,
2018; Stoutenburg et al., 2010).

Most assessments of wind and wave energy rely on numerical
models, but the choice of numerical model and parameterizations is a
recognized source of variability in wind and wave energy assessments
(Ambühl et al., 2014; Brown et al., 2013; Chen and Yu, 2017; Probst and
Cárdenas, 2010). This has impacts in the estimation of the time corre-
lation between wind and wave energy as, e.g., a lower significant wave
height (Hs) in a situation of high wind speed may result in a lower time
correlation than the actual one.

One way of remediating this is to use concurrent measurements of
wind speed and wave height and period, allowing the estimation of wind
and wave energy from a single source of data, such as remote sensing.
For wave energy assessments, the use of remote sensing has been
included in a global oceanic wave energy resource dataset (Zheng,
2021). Ponce de León et al. (2023) and Ponce de León et al. (2024), used
satellite altimetry data to assess the wave resource in the French Façade.

Space borne radar altimeters, which can measure Hs and surface
wind directly and the wave period can be derived from the Hs and the
normalised radar cross section σ0 (see Zhao et al., 2012 and references
therein). Their global coverage and relatively long instrumental record
makes them an attractive way of estimating wave energy resources
(Yaakob et al., 2016; Goddijn-Murphy et al., 2015; Wan et al., 2016), in
particular in those areas were high-resolution hindcasts are not available
as in South American or the African coastal zones (Guillou et al., 2020).
Also, since altimeters provide concurrent measurements of wave height
and near surface wind speeds, together with the wave periods estimates,
they are a platform of choice to understand the correlations between
wind and wave energy potential on specific sites. In particular, the ESA
Sea State CCI (SS_cci) (Dodet et al., 2020) provides a homogenized
global multi-mission altimeter climatic data record, including missions
from 1991 to 2018 present.

The objectives of this study are to investigate the feasibility of sat-
ellite altimetry-based assessments of combined wind/wave renewable
energy potential on the European shelf. In particular, this study will
attempt to understand how the wind and waves are correlated in the
North Atlantic and the Mediterranean, which are two areas with
different wind and wave characteristics.

The remainder of the paper is structured as follows: Section 2 is
devoted to the materials and methods, where the altimetry data set used
is described as well as the statistical coefficients used in the study.
Section 3 compiles the results, where is presented the validation of the
wave period estimates, the wind and wave power correlations and the
coefficients of variations estimated at selected sites in Ireland and
around the Iberian Peninsula. In Section 4, the main findings are dis-
cussed and in Section 5, conclusions are given.

2. Materials and methods

2.1. Wave and wind power

For real seas, the wave power density (energy flux) Pa in Wm-1 of
wave front can be computed as (Kalogeri et al. (2017)):

Pa =
ρg2H2

s Te
64π , (1)

where ρ is the sea water density (1025 kg m-3), g is the acceleration of
gravity (9.81m s-2),Hs is the significant wave height inmeters (themean
of the 1/3 highest waves) and Te is the energy period in seconds, defined
by:

Te =
m− 1

m0
, (2)

where mn is the n-th order moment of the wave spectrum. The energy
period Te can be derived from the zero-crossing period Tz as Te= 1.18 Tz,
for a JONSWAP spectrum with γ = 3.3 (Cahill and Lewis, 2014).

The wind power density (power per unit area) Pw in Wm-2 is calcu-
lated by means of the following expression (Kalogeri et al. (2017)):

Pw =
1
2

ρaU3
w, (3)

where ρa is the air density (1 kg m-3) and Uw is the wind speed (m s-1) at
hub height zH of 80 m.

2.2. The wave period empirical model

Using altimetry data, we have Hs directly from the altimeter, but we
need to estimate Tz. The empirical model of Gommenginger et al. (2003)
allows estimating the wave period, required for the computation of the
wave power density (1), from the Ku-band radar altimeter Hs and radar
backscatter coefficient σ0.

In the empirical model there is a linear relationship between the
quantity X = 0.25(σ0 Hs2) and Tz:

Tz = aX + b, (4)

where a and b are coefficients to be computed by linear regression be-
tween X, computed with the altimeter Hs and σ0, and Tz, obtained from
wave buoys.

A collocation of the altimeter and buoy measurements must be per-
formed to get (X, Tz) pairs. In our collocation procedure we match up
satellite and buoy data that coincide in time inside a 20-minutes window
around the time of the buoy datum and are less than 100 km apart. Since
the altimeter ground track resolution is much higher than 100 km, there
are several altimeter data inside the 100 km circle centered on the buoy
location. We average these data to compute the collocated altimeter data
of Hs and σ0. With this procedure we obtain a time series of satellite data
collocated with buoy data. The average time interval between collocated
data varies depending on the position of the buoy and the period of the
buoy data. This is because the number of altimeter missions in the
database changes with time as the missions are launched and termi-
nated. For the buoy locations of the study the average interval between
time series data is between 1 and 3 days.

2.3. The altimetry dataset

We used version 1.1 of the ESA Sea State CCI database of merged and
reprocessed altimeter measurements (Abdalla et al., 2021; Dodet et al.,
2020; Piollé et al., 2020). The SS-CCI database used spans the years from
1991 to 2018 (27 years) and included the ERS1, ERS2, TOPEX, ENVI-
SAT, GFO, Cryosat-2, Jason-1, Jason-2, Jason-3 and SARAL/Altika
altimeter missions. Except for SARAL/Altika (Ka-band), all altimeters
are bi-frequency (Ku/C or Ku/S bands), but only the Ku-band
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measurements were used for consistency. SS_cci is a continuation of the
GlobWave project (Globwave Team, 2013), with three additional al-
timeters: Jason-3, Cryosat-2, SARAL/Altika. Altimeter Hs
cross-calibration of these additional missions was carried out by
comparing Hs measurements at cross-over locations between those al-
timeters and the reference mission JASON-2.

In this work, the denoised Hs data was used. Denoised Hs was ob-
tained by application of the Empirical Mode Decomposition method
(Huang et al., 1998; Quilfen and Chapron, 2021). The overall metrics for
denoised Hs against in situ data located more than 200 km from shore
ranged between − 7 cm and 10 cm for bias and between 20 cm and 26 cm
for RMSE.

2.4. Coefficients of correlation and variability

To measure the correlation between the wind and wave renewable
energy resources, we used the Pearson correlation coefficient τ of the
wind and wave power densities time series:

τ(Pa, Pw) =
1
N

∑N

i=1

(
Pa,i − Pa

)(
Pw,i − Pw

)

σPaσPw
, (5)

where N is the length of the time series, Pa,i and Pw,i are the ith elements
of the wave and wind power densities time series, Paand Pw are the wave
and wind power densities time series averages, and σPa and σPw are the
wave and wind power densities time series standard deviations. The
correlation given by (5) varies between τ(Pa,Pw) = − 1, which indicates
that the resources are inversely correlated, i.e., when one is increasing,
the other decreases, and τ(Pa,Pw) = 1, which says that the resources are
directly correlated, i.e. they increase or decrease simultaneously. If the
resources are uncorrelated, then τ(Pa,Pw) = 0.

To measure the variability of the wind and wave renewable energy
resources, we use the coefficient of variation (COV) and the seasonal
variability indicator (SVI) following Ringwood and Brandle (2015).

The COV is the wave or wind density time series standard deviation
σP normalized by the wave or wind power density time series average P:

COV =
σP
P
, (6)

The SVI is calculated by:

SVI =
Pmax − Pmin

P
, (7)

where Pmax and Pmin are the maximum and minimum of the wave or
wind power density time series.

3. Results

The correlation between wave and wind energy was assessed in the
west coast of Ireland, the north and west coasts of the Iberian Peninsula,
and the western Mediterranean (Fig. 1).

3.1. Validation of wave parameters

This section presents the validation of the wave period Tz and the Hs.
The method of Gommenginger et al. (2003) was already extensively
validated by several authors. Fig. 2a shows the buoy Tz estimated by (4),
against Hs calculated from the Cabo Silleiro wave buoy data. The scatter
plot indicates the density of data points and shows a strong correlation
with Hs for Tz. However, some dispersion can be seen for the higher
periods. On the other hand, for the Hs (Fig. 2b), the correlation between
the altimeter and the Cabo Silleiro buoy data is high, as can be seen with
a correlation coefficient of 0.94, with a negative bias of − 0.124 (buoy
data are underestimated) and a scatter index of 0.18. During the 27 years
studied, the maximum Hs at Cabo Silleiro was about 8 m. Regarding the
Hs buoy – satellite correlation for the other buoys (Fig. 2, panels c – h), it
deserves to be mentioned the relatively high bias at M6 (0.255 m;
Fig. 2d) and the high scatter index of 0.39 at Cabo Begur (Fig. 2h), which
also has the lowest correlation coefficient (0.84).

The comparison of the buoy and satellite estimates of the wave
period (Fig. 3) show that the method tendentially overestimate the
period in the lower range and underestimates the upper range of the
wave period (the best fit line slopes are all < 1). The bias in the wave
period estimates is zero due to the use of linear least squares in the
regression of (4). The root mean square error (rms) between the buoy
and satellite wave periods are shown in Table 1. The rms errors are close
to 1 s, except for the Villano-Zisargas buoy that has an rms error of 1.88
s.

The correlation coefficients computed using the satellite data are
higher than those of the buoy. This is due to the collocation of the
altimeter and buoy observations performed that uses 100 km as the
maximum distance of the satellite observation from the wave buoy and
could be explained by the lack of Irish wave buoy data. As can be seen
from Table 1, the highest correlation was obtained in the Mediterranean
Sea at Dragonera (0.810 estimated with satellite observations), where
the sea state is characterized by wind sea. The lowest correlation was
obtained in the North Atlantic at Cabo Silleiro and Villano-Zisargas. At
the same time, relatively high values are representative of the Irish lo-
cations where the sea state is dominated mostly by the swell.

Fig. 1. Buoy (red circles) and wave and wind power assessment locations (magenta circles). (left) West coast of Ireland. (right) Iberian Peninsula and Western
Mediterranean. VILLA.: Villano-Zisargas; SILLE.: Cabo Silleiro; G. CAD: Gulf of Cadiz; C. BEGUR: Cabo Begur; TARRAG.: Tarragona; DRAG.: Dragonera.
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Fig. 2. a) zero-crossing period vs Hs at Silleiro buoy; b) Satellite Hs vs Buoy Hs (45◦ line in black); c) same as b) for M4 buoy; d) idem for M6 buoy; e) idem for K5
buoy; f) idem for Villano-Zisargas buoy; g) idem for Dragonera buoy; h) idem for Cabo Begur buoy; s.i: scatter index; CC: correlation coefficient.

S. Ponce de León et al.
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Fig. 3. Buoy and Satellite period scatter plots. a) M4; b) M6; c) K5; d) Cabo Silleiro; e) Villano-Zisargas; f) Dragonera; g) Cabo Begur. For the Irish buoys M4, M6 and
K5, the period values were rounded to the nearest integer.

S. Ponce de León et al.
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3.2. Wave and wind power resources

Wave and wind energy time series were computed in the four wave
power assessment location sets (see Fig. 1). The length of the data period
and the number of observations used to compute the energy resource
time series is shown in Table 2. The length of the observational datasets
spans the years 1991–2018 for all zones, but the average number of
observations varies with zone and within zones. The zone with the
greatest number of observations is Ireland, while Spain Atlantic has the
lowest number of observations, likely due to the fact that these locations
are closest to the coast than the others. But many other factors can cause
variability in this quantity, since there are several factors affecting the
validity of the altimeter observations, such as the occurrence of rain.

Wind power resources show a marked variation between the study
sites (Fig. 4a). The highest wind power is registered in the west coast of
Ireland, with values between 1000 and 1500 W/m2, which compare to
the estimates of Kalogeri et al. (2017) for the same zone. The values for
Portugal and Atlantic Spain (PT1–5 and E1–5 in Fig. 4a) also compare
well to the results of Kalogeri et al. (2017), with the highest value at E4
of around 1000 W/m2 at Cape Finisterre and decreasing to the South
(PT1–5) and to the East (E1–3 and E5). For the Spain Mediterranean set
of locations (E6–9) we also find agreement with Kalogeri et al. (2017),
with the highest mean wind energy in the Gulf of Lions (E6), around
1500 W/m2 and much lower values in the other locations.

The mean wave power also shows similar behavior (Fig. 4b). The
highest values are for the Irish coast with values between 60 and 70 kW/
m, a range in line with the mean value for 2001–2010 of 75–85 kW/m of
Kalogeri et al. (2017), but lower than the winter average of 100 kW/m of
Gallagher et al. (2014). The Portuguese coast locations show much
lower mean wave power, in the 20–30 kW/m range, decreasing towards
the South, in agreement with the estimates of Mota and Pinto (2014).
The same range is found for the Atlantic Spain locations, in agreement
with the findings of Iglesias and Carballo (2010). The Spanish Medi-
terranean locations show the lowest wave energy potential, in line with

Kalogeri et al. (2017).

3.3. Wave and wind power correlation

The results for τ(Pa,Pw) show that the wind and wave power corre-
lations are higher for the Mediterranean locations and Ireland than for
Portugal and Atlantic Spain (Fig. 5).

We note that the zero-lag correlations were computed using the
complete time series. Monthly or seasonal average correlation co-
efficients can be lower (see e.g., (Fusco et al., 2010) for the Irish coasts).
In Ireland, there isn’t a significant change in τ(Pa,Pw) as we move along
the coast (Fig. 1a). The locations on the Portuguese coast have τ(Pa,Pw)
in the vicinity of 0.5, decreasing towards the south. The Spanish Atlantic
locations generally tend to decrease from the northwest corner to the
Bay of Biscay.

The Mediterranean locations have the highest correlation. The gen-
eral trend is a decrease from the northern location in the Gulf of Lions
(E6; Fig. 1b) which has a correlation coefficient above 0.8, to the
southernmost location (E9; Fig. 1b), in the Western Mediterranean Basin
with τ(Pa,Pw) slightly below 0.8. The high correlation values are caused
by the absence of significant swells in the area, which has its wave
climate dominated by local seas. This is especially true in the Gulf of
Lions, where the highest correlation was obtained.

3.3. Coefficients of variation

Given the random nature of waves and their variability, we cannot
ignore that wave power is also modified by wave variability (Reguero
et al., 2015). Due to temporal variations, those sites characterized by
high amounts of wave energy are not always the ideal locations for wave
energy collecting (Besio et al., 2016). Knowledge of the variability
matters for the design of devices and can reduce or enhance the effi-
ciency of the WECs.

To get a comprehensive analysis of the wave power assessment, we
estimated the typical coefficients of variability described in Section 2.4.
The COV shows a negative correlation with the mean wave power. The
locations with the highest COV are those of the Mediterranean (Spain),
while those with the highest wave power have lower COV (Fig. 6).

The COV of the mean wind power varies between 1 and 2 (Fig. 6a).
The Irish locations and the Portuguese locations appear as clusters,
while the Spanish locations exhibit a widespread COV value. The lowest
COV occurs on the west coast of Ireland, in the northwestern corner of
the Iberian Peninsula (E4) and in the Gulf of Lions (E6). These zones
have the highest mean wind power (Fig. 6a and (Kalogeri et al., 2017)).
The remaining Spanish locations are in regions with low mean wind
power and where topographic effects are significant and therefore,
exhibit the highest COV of the study set.

In the COV of the mean wave power (Fig. 6b), four clusters can be
identified: the Mediterranean cluster (E7–9) with the highest COV and
lowest mean wave power; the northern Iberian cluster (E2,E3 and E5),
with the second highest mean wave power; the western Iberian cluster
(PT1–5, E1, and E4) that has the lowest COV and the western Irish
cluster (IRE1–4) with the highest mean wave power and low COV.

The SVI (expression 6, Section 2.4) of the mean wind power (Fig. 7a)
shows a similar distribution to the COV (Fig. 6a). For the SVI of the mean
wave power (Fig. 7b), the distribution is similar with respect to the Irish
and West Mediterranean locations. The Iberian locations, on the other
hand, are spread over the SVI range, although the Portuguese locations
appear mostly in the upper range, while the Spanish locations appear
predominantly in the lower part of the SVI range.

4. Discussion

The use of altimeters can provide site estimates of wind and wave
power, provided wave periods can be estimated from the altimeter data.
since the seminal work of Davies et al. (1997), several methods to

Table 1
Root mean square errors of the energy period estimates and zero-lag correlation
coefficients between the wind speed and the Hs estimated from the satellite
altimetry data and buoys. Note: τ(Hs,Uw)-Zero-lag correlation coefficient; PAS-
Port Authority of Spain; ME-Met Éireann-Ireland’s National Meteorological
Service, UKMO-UK Met Office.

North Atlantic Buoys Period (Years) RMS Te
(s)

τ(Hs,
Uw)
satellite

τ(Hs,Uw)
Buoy

M4 (ME) (2009–2018) 0.98 0.771 0.617
M6 (ME) (2008–2018) 0.83 0.664 0.705
Cabo Silleiro (PAS) (1999–2018) 1.02 0.468 0.258
Villano-Zisargas
(PAS)

(1999–2018) 1.88 0.501 0.371

K5 (UKMO) (1999–2018) 0.79 0.728 0.653
Mediterranean Buoys
Dragonera (PAS) (2007–2018) 1.18 0.810 0.657

Table 2
Length of observational datasets at the assessment locations of Fig. 1. Dates of
first and last observations were determined from all locations in each region. The
average number of observations is the average of the number of valid altimeter
observations for each location in each zone.

Assessment
locations

Date of 1st
observation

Date of last
observation

Average number of
observations

Ireland (IE1–4) 02/08/91 27/12/18 5015
Portugal
(PT1–5)

03/08/91 22/12/18 4647

Spain Atl.
(E1–5)

19/02/91 29/12/18 2916

Spain Med.
(E6–9)IE4

02/08/91 25/12/18 36,808
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Applied Ocean Research 152 (2024) 104184

7

estimate the wave period from altimeter observations were developed,
from the fetch-dependent semi-empirical formulas of Hwang et al.
(1998) to the neural network approach of Quilfen et al. (2004). The
method used in this paper used an empirical relationship between the
wave period and the altimeter significant wave height (Hs) and radar
cross-section σ0. The empirical method of Gommenginger et al. (2003)
can provide the wave period estimates that are needed to compute the
wave power density. Although the errors introduced by the empirical
method, which only used the Ku-band Hs and σ0, are acceptable, the
combination of Ku and C-band measurements can improve the wave
period estimates (Zhao et al., 2012).

Another issue with the semi-empirical wave period models is related
to the validity of the relationships between wind speed (or σ0) and wave
period for fully developed seas. Kshatriya et al. (2005) proposed an al-
gorithm for altimeter wave period based on the pseudo wave age ξ, to
distinguish wind-sea from swell sea states, using TOPEX data in the
Arabian Sea and the Gulf of Bengal, while Mackay et al. (2008) used a
multi-mission database to develop a two-piece algorithm for the altim-
eter derived wave period, based on a threshold value of σ0, above which
σ0 appears not to be related to the wave period. Zhao et al. (2012)
compared the results of several altimeter estimates of wave period with
a newmethod that also used the pseudo wave age and found comparable
root mean square errors of ~1 s and biases that varied from − 0.35 s to

Fig. 4. Mean wind and wave power. a) Mean wind power. b) Mean wave power.

Fig. 5. Zero-lag correlation coefficient τ(Pa,Pw) between wave and wind power.

Fig. 6. Coefficient of variation at the study locations of Fig. 1. Left panel: Mean wind power; Right panel: Mean wave power; Locations: IRE1–4: West coast of Ireland
(Atlantic); PT1–5: West coast of mainland Portugal (Atlantic); E1–3 and E5: North coast of Spain (Atlantic); E4: West coast of Spain (Atlantic); E6–9: West coast of
Spain (Mediterranean).

S. Ponce de León et al.
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0.01 s. As such, the results obtained in this study with the Gommen-
ginger et al. (2003) method are within the expected range. So whether or
not the wave age is an issue in wave period estimates from satellite al-
timeters still remains an open question, which deserves further study.

The distribution of wave and wind power are consistent with other
studies such as Kalogeri et al. (2017), which also found that the wave
power density was larger on the Irish west coast and around the
northwestern Iberian peninsula. The wave power level is somewhat
constant over the entire west coast of Ireland, likely due to the
large-scale swell fields that hit that region, especially in winter (Gal-
lagher et al., 2014). When compared to the other sites, both COV and SVI
are smaller for the Irish area, which favours the west coast of Ireland for
renewable energy projects from a point of view of reduced variability of
energy supply (Ringwood and Brandle, 2015). A similar relationship
between exposure to swells and COV was found by (Zheng et al., 2013)
for the China Seas.

On the other hand, the sites on the Atlantic façade of the Iberian
Peninsula have a lower correlation between the wind and wave
renewable energy resources than the Mediterranean-facing coasts, so
they are more attractive from the point view of combined exploitation of
these resources, including reduced variability of the combined power
supply (Fusco et al., 2010; Kalogeri et al., 2017).

5. Conclusions

Using North Atlantic and Mediterranean European sites as compar-
ators for wind/wave correlation, we show that wind/wave energy is
relatively correlated in the Mediterranean sites but not in the Western
North Atlantic sites, which has implications for the efficient combina-
tion of renewable energy sources to increase the resiliency of the
renewable energy supply. Our contention is that the increased correla-
tion in the Mediterranean areas is due to the fact that wind and wave
resources are ultimately generated by local wind, while the North
Atlantic swell is not correlated with local coastal wind.

The collocation of wind and wave farms (hybrid farms) only has a
strong rationale in locations where the wind and wave energy resources
are relatively uncorrelated. Thus, the European coasts facing the
Atlantic Ocean are clearly the most adequate place for this purpose.

The different characteristics of the studied sites show some corre-
spondence between variability and mean wave power which is an
essential input to a marine renewable energy strategy in any jurisdic-
tion. The level of variability decreases with an increase in mean wave
power, undoubtedly since the higher power waves are caused by swell,
while wind waves have higher variability.

Satellite altimetry was used to estimate wind and wave power re-
sources in the European coastal waters at the study locations. The ESA
SS_cci database provided a 27-year time series of sea state variables, and
the Gommenginger et al. (2003) method was used to estimate the wave
period. The wave/wind power assessment presented here will be
extended to other coastal locations worldwide.
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