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Abstract—1In wave energy systems, in contrast to other
renewable energy applications, the external input acting on the
system is not a measurable quantity. Simultaneously, knowledge
of this wave excitation force is essential for the operation
of energy-maximising controllers. Considering these aspects,
the problem addressed in this paper is that of the design of
an unknown input observer, based on homogeneous sliding
mode techniques, which is capable of simultaneously rejecting
unbounded measurement noise and providing a robust estimate
of the unknown input to wave energy systems, the excitation
force. While inspired by a wave energy application, the proposal
is generic, requires only a measurement of the system output,
and provides precise estimation of the system states and the
unknown input. The precision of the unknown input estimation
is conditioned by the accuracy of the employed model, but,
notably, the estimation errors associated with the homogeneous
part of the observer are asymptotically optimal, guaranteeing
exact convergence in the absence of measurement noise.

I. INTRODUCTION

Wave energy conversion (WEC) systems are oscillating
structures capable of extracting energy from the motion of
waves and it has been shown that advanced control tech-
niques can significantly improve their commercial viability
[1]. WECs oscillate as the result of fluid-structure interac-
tions, and major hydrodynamic differences exist between
different WEC prototypes. Analytically, a non-parametric
model for the WEC may be obtained by solving a surface
integral over the wetted surface of the WEC [2]. However,
for the design of energy-maximising controllers, a parametric
model is required. In this context, the most widespread linear
control-oriented model can be represented as:

mg'é= fe_fu _fT(j77j)_fk(x)’ (1)
M Y——

External forces Internal forces

where z is vertical displacement (assuming a one-degree-of-
freedom device), m is the WEC mass, f. and f; are the
radiation and hydrostatic restoring forces that define the free
system dynamics, and f. and f, are the two external forces
acting on the body. Here, f. is the wave excitation force, and
fu 1is the control action, which is calculated to maximise
energy extraction from f.. Energy-maximising controllers
essentially require obtaining the panchromatic complex-
conjugate of the WEC intrinsic impedance [2], which is

This work was possible thanks to the support of Science Foundation
Ireland under grant numbers 21/US/3776 and 12/RC/2302_P2, and of the
University Nacional de La Plata, CONICET and ANCyT, Argentina.

! Centre for Ocean Energy Research, Department of Electronic Engi-
neering, Maynooth University, Co. Kildare, Ireland

2 Instituto LEICI, Facultad de Ingenieria/UNLP - CONICET, La Plata,
Bs.As., Argentina.

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

defined in the Fourier domain from f,(&,%) and fi(z). In
this scenario, optimal WEC controllers require a forecast of
the excitation force to define an energy-maximising trajectory
[3]. However, due to the complex nature of fluid-structure
interactions, f. is not easily separable from other hydrody-
namic forces on the WEC device. Consequently, f. is an
unmeasurable quantity, and real-time estimation is necessary.

In the literature, there have been multiple proposals to
estimate the excitation force [4], [5], [6]. Notably, Kalman
filter (KF) based algorithms are the most widespread when
using only WEC state measurements, e.g., position and ve-
locity [4]. This is mainly because of their ability to deal with
measurement noise and model uncertainty [7]. A relatively
unexplored alternative is based on filtering sliding-mode
(SM) differentiators (FSMD) [8]. Therefore, in this paper,
inspired by the excitation force estimation problem, a new
unknown-input observer structure, based on FSMDs, is pro-
posed. The proposed estimator, termed a homogeneous SM-
based observer (HSMO), consists of an SM filter capable of
rejecting unbounded noise, provided this is small on average
(formalised in Section II), and a homogeneous SM structure
designed to mimic the system dynamics. The results show
that this structure is capable of matching the results obtained
with a KF-based unknown input observer but with additional
design simplicity and improved convergence dynamics, due
to the finite-time convergence of SM algorithms.

A. Notation

Throughout this paper, vectors and matrices are indicated
with bold characters, such as u, x, or A, while scalar
elements are indicated with lower-case italic characters, such
as k,l,m. R®™*™ denotes real matrices with n rows and m
columns. Additionally, @ indicates the direct sum of matri-
ces, dynamical systems are concisely written with X, |||«
stands for the infinite norm of @, and [-]* := | - |*sign(+).
%) (t) represents the k-th time derivarive of f(t). Also, the
time argument is omitted when clear from the context.

B. Paper organisation

The present work is organised as follows. In Section II the
required preliminary definitions are presented. In Section II-
B a linear WEC model, employed for the design of the
HSMO), is presented. The main contribution, the HSMO, is
developed in Section III, and a numerical example focused
on the f. estimation is developed in Section IV. Finally, in
Section V, the main conclusions are drawn.

4257



II. PRELIMINARIES
In this section, the required definitions and the WEC
model used throughout the paper are defined.
A. Fundamental definitions

First, a differential inclusion (DI) is denoted as:
e ®(x), ®(x)cT,R", )

where its solutions are locally absolutely continuous func-
tions x, that satisfy (2) for almost all ¢. T,R™~, denotes the
tangent space to R™= for & € R"=. Equation (2) is a Filippov
DI [9] if the vector field ®(x) € T,R™= is nonempty, upper
semicontinuous, and compact and convex for any x.

A coordinate dilation in R"s, with weights
mi, Ma, ..., My, is defined as:
dy i (21, T2,y vy T, ) —
(K™Mxy, K™ x9, ooy KM, ), 3)

with k > 0, which is an expansion or contraction of the
coordinate state-space vector . Employing (3), it is possible
to define the weighted homogeneity degree for DI (2).

Definition 1: A vector field ®(x) < T,R"=, x € R",
from a DI (2), is homogeneous of degree ¢ € R if:

®(x) = v 9d; (®(de)), 4

with  # 0 and k > 0, k € R, holds. That is, the vector field
is invariant w.r.t. the transformation k= 9d_ ! (®(d.x)).

Employing dilation (3) in (4) permits any system dynamics
with any homogeneity degree # 0, to be scaled to obtain a
homogeneity degree +1. Homogeneity has been a stepping
stone in recently developed sliding mode-based algorithms,
since a negative homogeneity degree guarantees finite time
convergence [10]. Furthermore, since Filippov DIs feature
the existence and extendability of the results, local conver-
gence implicitly indicates global convergence, removing the
necessity of Lyapunov-based stability demonstrations [11].
In this paper, all differential equations are understood in the
Filippov sense.

Definition 2: A function v(t), v : [0, ) — R is called
a signal of global filtering order k, k > 0 if v is a locally
integrable Lebesgue measurable function, and there exists a
solution ¢ for the differential equation £¢(*) = v. Then, |£(t)]
is the k-th global order integral magnitude of v.

Definition 3: Any signal v(t), v [0,00) — R
is termed locally filterable if it can be represented as
v(t) =eo+ €1 + ... + £, where each ¢;, with i = 0,1, ..., k,
are signals of global filtering order 0, 1, ..., k, respectively.
Note that locally filterable functions only satisfy Definition 2
over finite length intervals. That is, for positive constants
t1,T, there exists a solution &(t), ¢t € [t1,t1 + T] for
¢ (t) = v(t), with local (k—1) filtering order a;, satisfying
1EO@)| < ar, with 1 =0,1,2, ..k — 1.

The global and local filtering order are essential def-
initions, provided FSMDs are capable of rejecting noise
with a finite global (or local) filtering order when their

integral magnitude is negligible when compared with the
differentiated signal. For a broader discussion about these
definitions, please refer to [8], [12], [13].

B. Wave energy conversion system model

A linear WEC model (1), requires definitions for the
radiation and restoring forces. Firstly, assuming small dis-
placement from an equilibrium position:

fre = ka2, &)

where k, is the hydrostatic restoring force coefficient. The
radiation force may be defined in terms of a non-parametric
linear convolution [14]:

t

fr=mepd + f h.(t — 7)z(7r)dT, 6)

to

fr

where m, is the infinite frequency added-mass, z, © := v,
and & := v represent the displacement, velocity and accelera-
tion of the WEC, respectively, and h,. is the radiation impulse
response kernel. Because of the nature of the system, the
convolution operator describes a causal strictly passive sys-
tem. Additionally, to approximate the convolution from (6),
a linear, continuous-time, strictly proper, finite-dimensional
system, is considered:

(Ta)
(7b)
with F € R %" Hurwitz, and G € R""*! and H € R1*"r,
Thus, x] = [z, ..., T,,]. For a formal discussion on the

properties associated with 3., see [15]. Considering (5) to
(7), the approximate state-space representation of (1) is:

Zw:{szx+BLﬁﬁm%
y = Cx,

{)'(T = Fx, + Go,
hIM -
fr ~ Hx,,

(8a)
(8b)

where xT = [z,v,x]], y = xz, and the triple which
represents (1), in state space form, is:

[ Axw -BuH| o [Bu| ~r [Cu
A_[GCM F ]’B_[O]’C _[0]7 ®

0 1 0 1
AM_[—Mkm O]’BM:[M]’C}”:[O]’ (10)

where M = (m—&-mao)_l, and the zero vectors are 0 € R™*1,

IIT. UNKNOWN INPUT OBSERVER DESIGN

The main focus of this paper is to design an unknown input
observer, capable of recovering not only the system states but
also the unknown input, i.e., the wave excitation force (f.).
In this paper, the proposed HSMO is based on a variation of
the FSMD [8][13]. The goal is to utilise only measurements
of the device position = (alternatively, velocity), assuming
that x = x¢ + €, where x is the base signal to differentiate
and ¢ is a high-frequency noise component.

The FSMD structure is selected due to its finite time
convergence and insensitivity to noise as detailed in 1) below
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[12], [16], [17], [18]. Specifically, FSMDs are capable of

providing up to the ny, time derivative of an input signal if:

1) The noise € contained in the signal to differentiate ¢ is

a signal of global (or local) filtering order k > 0, with

k-th order integral magnitude € > 0. That is, € may

be possibly unbounded but with a small local average

value. Note that as a particular case, with k£ = 0, the
requirement is |¢| < e with constant e.

2) There exists a known Lipschitz bound for the n-th time
derivative of the base signal to differentiate z.
Although the proposal presented in [8] is to differentiate
signals, here it is proven that an extension of this structure
provides estimates not only of the system states but also of

the unknown input [19].

A. Homogeneous sliding mode observer (HSMO)

In essence, the proposed HSMO is a mimic of the original
system, which is built assuming that a measurement of x
is available. The proposed observer possesses an SM-based
filter, capable of rejecting unbounded noise of filtering order
ny, and a small integral order magnitude. In addition, it is
capable of providing both an estimate of the WEC states and
an estimate of f.. To that end, it is formulated as:

Wy = Wz + Papn, (W1), (11a)
Wy = w3 + Pa1n,—1(w1) (11b)
Wn,—1 = Wnf + Pa(wr) (11c)
U, = & —x + da(wi), (11d)
. & =04 ¢go(wy), (11e)
R ek ek TP ETT

mo
fe = do(w1), (11g)
%, = F%, + G (11h)
fr = Hx, (11i)
fo = ko2 (11j)

where equations (1la) to (11d) constitute a ng-order
SM filter, designed to integrate the error e, =2 — z,
and reject spurious components of the filtering order not
exceeding ny. Each ¢;(wi) is defined as ¢;(w1) =
A LG =0/B+n0) 917G Gith i = 0,1,...,2 + ny,
A; are predefined fixed gains, and L is a Lipschitz bound-
based constant formally defined in Subsection III-B. The
constant L is the only adjustable parameter used to guarantee
algorithm convergence. Finally, (11e)-(11j) represent a copy
of the model >, of (8), assuming that m is the nominal
mass of the WEC and that the real mass m may be unknown.
To prove convergence of (11), the errors ey = e, = & — =,
e1 = e, =0 — v, and

E_fr+fk+fu+fr+fk+fu
m mo m

ea=es = fo— , (12)

<

Az}f

are defined, and the error dynamics of the first 3 + ny states
of the HSMO are rewritten as a Fillipov DI:

w; = wa + ¢2+nf (’w1), (13a)

B(e) : | W, = ez + ¢3(w1), (13b)
€0 = €z = €y + Pa(wy), (13¢)

é1 = &, = ef, + ¢1(w1), (13d)

ey = é5, € gpo(wr) + [—L; L], (13e)

with e := [wi,...,wn,,e0,€1,€2]T, and assuming
\% (% + Axy) | < L. Then, it can be appreciated that (i)

By applying the dilation:

d 2 (W1, .oy Wy, €0, €1, €2) —

3 4 3 2 1
(K> wy, ..., K we, K eg, ke, K'es), 14)

and (ii) Considering that ¢;(k3t" w;) = k'¢;(w;), the DI,
®(e), is homogeneous with homogeneity degree = —1. This
is verified by evaluating (4) employing the dilation (14):

k94 (®(de)) = k6 (B(e)) = ®(e), (15)

which is satisfied only if ¢ = —1. As a consequence, if there
exists L satisfying |% (% + Axy) | < L, the convergence

of (13) is independent of the (bounded) radiation fr and
restoring fk forces estimates, and finite-time convergence
of the estimates & — z, ¥ — v and fe — fm" + Aygy is
guaranteed. Regarding the dynamics of the radiation states
error (ex, ), these are given by:

ex, = Fey, + Ge,. (16)

Therefore, provided e,, — 0 in the absence of measurement
noise, ex,. asymptotically converges to zero. This is because
the radiation subsystem is strictly passive [2] and, thus, F is
Hurwitz.

A noticeable aspect, however, is that fe does not converge
to fe / m whenever there is model uncertainty. This is because
the unknown input can only be estimated with knowledge of
the system. Therefore, the term Axy must be considered to
include model uncertainty and initial conditions errors.

The HSMO convergence is guaranteed provided that their
design coefficients are adequately tuned. Thus, it is also
important to consider the effects of the gains \; and the
Lipschitz-based gain in the estimation errors in the presence
of measurement noise as defined below.

Assumption 1: The noise ¢ contained in the measured
signal z = xg + ¢, is composed of ny components:

e=¢coter+...+eén,, (17)

and each term ¢;, i = 1,2, ...,ny is of global filtering order
1 with ¢-th order integral magnitude ¢;. Additionally, the
observer is assumed to operate in t € R.

Employing Assumption 1 and [8], the asymptotically optimal
accuracy of the HSMO is given by:

lej| < 725 LpP T < pyLp® I, with j = 0,1,2,  (18)
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19)
) (20)

e[ (). ()" ()]

where pu; and g, are fixed, bounded from below with
the Kolmogorov constants [8], and only depend on the
selection of the \; gains with ¢ = 0,1,...,2 + ny. Since
the selection of the ), affects the accuracy asymptotics of
the proposed observer, these may be selected following [8],
where a recommended set of gains J); is presented. On its
part, to guarantee the HSMO convergence, L must satisfy the
design criteria specified in Subsection III-B. Complementary,
in the case of a finite sampling rate, recently, discretisation
proposals that do not deteriorate the asymptotic accuracy of
the differentiator have been made [20].

lex,

B. Lipschitz-based gain selection

As previously mentioned, the convergence of the HSMO
only depends on the appropriate selection of a large enough
gain, L, based on a Lipchitz bound. More specifically, for
the WEC under study, considering (12) and (13e):

d
P <7frez + Ay f) ’ <
Therefore, to guarantee the convergence of the proposed
HSMO, an L satisfying (22) is required. To find L, several
considerations must be made. In the first place, since resource
characterisation is a mature area of research, bounds for
fe / m (which is the principal contributor to L) are easily
accessible [21]. In the second place, the contribution of the
term Ax;y is relatively negligible when a good model is
available. Otherwise, a bound for this term may be found
theoretically, considering the unmodelled hydrodynamic ef-
fects, although it is not a trivial task. Hence, in practice,
it is advisable to resort to an in-silico approach, analysing
different initial conditions errors and unmodelled dynamics.
Moreover, although beyond the scope of this paper, an
adaptive Lipchitz gain algorithm may be designed [13].
Finally, it is worth considering that a larger L reduces the
initial convergence time of the observer at the expense of
increasing the error bounds (as can be observed in (18)-(21)).
Nevertheless, in wave energy applications, the convergence
time is not a critical parameter due to the slow dynamics of
wave climate variations [21]. Thus, the smallest L satisfying
(22) can be selected providing the lowest error bounds while
guaranteeing convergence.

Je (22)
m

+ ‘Agf’ < L.

IV. RESULTS AND DISCUSSION

In this section, numerical results, obtained using the
HSMO in a WEC application, are presented. To emulate a
realistic environment, the device considered for the observer
evaluation is a heaving point absorber buoy [22], with
parameters as presented in Table I. This is a one-degree-
of-freedom device, which satisfies (8). For the design of
the HSMO, it is assumed that the measurement noise is of
filtering order < 2, thus, ny = 2. Additionally:

« Two measurements are available, position and velocity.
Thus, two separate HSMOs are independently designed;
one to filter and estimate position, and the other to
estimate velocity and reconstruct fe.

o The HSMOs are discretised employing the proposal
from [13], with sampling period 7' = 1- 10~

As a result, the HSMO for the velocity and f. reconstruction
is given by:

Swy gy = T(P3(wy) + w3) + wy, (23a)
Swy pyny = T(d7(wy) + ev) + w3, (23b)
PR S oo 5 e et fu
0D (k1) =T<¢o(w1) + fe— U L I J;}’; ! ) (23¢)
[ 6 Feqiry = Top(w?), (23d)

where the notation da 41y = a(x+1) —a() is employed, and
the superindex v is used to indicate the functions belong to
the velocity HSMO ;. On the other hand, the HSMO for
position estimation is a SM zero-order filter, given by:

oWy () = T3 (wf) + w3) + wi, (24a)
Yi g 0wy = T(o7(wy) + €z) + w3, (24b)
02 w1y = T (w). (24¢)

In Table I, the remainder of the parameters, for the design
of ¥; and X, are presented.

To assess the accuracy of the proposed HSMO, the error
is calculated. Then, the simulation results are mainly focused
on the results of the reconstruction of f.. These results
are compared with a Kalman filter unknown input observer,
designed to obtain an accurate f. estimate [4].

TABLE I
NOMINAL SYSTEM MODEL, UNKNOWN INPUT OBSERVER PARAMETERS
AND NORMALISED ROOT MEAN SQUARE ACCURACY

I WEC model 1]
[M=68x10"° ] k, =5.57 x 10° ] ne =17 I
I Parameter [ z-HSMO [ v-HSMO i

L; 5 [m/s?] 6 [m/s3]

Ao 1.1 1.1

A1 3.06 2.12

A2 4.16 2

A3 3 N/A

€0 N(0,9-1079) N(0,2.5-1075)

€1 0 Equation (29)

I State estimation precision I
H NRMSA [ HSMO [ KFHO - R = 10~ 7 H
ex 99.95 99.41
ey 99.93 99.94
Hex,. 100 99.99

A. Kalman filter with harmonic oscillator

In this subsection, a KF with a harmonic oscillator
(KFHO) is presented. This estimator has proven to have
a good response to noisy signals [4]. The KFHO is, in
essence, a linear observer with extended dynamics, which are
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Figure 1.  Excitation force and force estimates when a difference in

the initial conditions between the model and the plant is considered. (a)
Excitation force and force estimates for each observer. (b) Estimation errors.

considered to model the temporal variation of the excitation
force, which is assumed to be of the form:

fEE Z A;sin (wit + 6;), (25)

i=1
where n, € N. Depending on the number of considered
frequencies ny, the KFHO uses 2n, extra states in the
system model (8) to design the observer. Succinctly, the
KFHO employs the nominal system matrices from (8) and
is extended as:

A BC R
e = |:0 Aff:| T + Lk(y - y)v (263)
XK fe=1[0 Cjla., (26b)
g=[C 0], (26¢)

with Lj being the infinite horizon Kalman gain, which
depends on the measurement and process noise covariance
matrices (see Subsection IV-B), and:

Af_eé[f_ %i],cf_[l 010

i=1 L%

1 0]. @7

For further details, the reader may refer to [4], [5], [23].

B. Process and measurement covariance matrix selection

One of the main advantages of the Kalman filter is that
it can consider uncertainties in the model, while it also
incorporates information on the sea spectrum. In case the
system is a precisely identified model of the plant, the
process noise covariance matrix associated with the WEC
model is typically:

Q=0,®ql2y,,, (28)

=20 : .
£ W“MW‘HHH\‘HHM
5 T
3 s \
S 0Ky - —re -
g 1
é \\‘\‘\\m\\“‘HW”“““““
2 -20 . :
S 0 50 100 150
Time [s]
Figure 2. Measured velocity v with gaussian noise and noise from (29)

between 50s - 100s.

with ¢ € R being large. Regarding sensor characterisation,
the associated covariance matrix R must be selected consid-
ering the sensor characteristics and expected measurement
noise. In combination with Q, the selection of R has a
major impact on the obtained results. This is illustrated in
Subsection IV-C.

C. Estimator comparison

To evaluate the robustness of each observer, measurement
Gaussian noise ¢, in accordance with [4] is considered. This
is included to represent sensor measurements with spurious
components within the signal bandwidth (see Table I).

In Figure 1, the f. estimates obtained with the KFHO,
employing different R values, are presented and compared
with the HSMO, when there is 10% error in the initial
conditions. Regarding the KFHO estimates, it can be noted
that, with smaller R, the convergence is slower, but fe
presents minor amplitude oscillations when compared with
the cases with larger R. This is because, when a perfect
model is assumed, and R — 0, the KF-based observer tends
to a high-gain observer performing a plant inversion which
is, conceptually, the procedure performed by the HSMO [22].

The normalised root mean square accuracy (NRMSA) [4]
of the HSMO and the KFHO for the estimate of the states,
when the noise € = ¢, is presented in Table I. It is worth
noting that the results obtained with the HSMO depend
only on the appropriate selection of L which, together with
the unbounded noise rejection capabilities of the SM filter,
provide the HSMO with considerable design flexibility. To
illustrate the latter aspect, the following scenario (focused on
the reconstruction of f.) is proposed; the noise is assumed
to be € = g + €1, satisfying Assumption 1, with €1 of the
filtering order 2, specified as:

2 d?

e1(t) = kegﬁ ([cos(lOOOt)]3/2) =
) =1 »
= (BASIOLE o pojcost ol 2. 29

with k. = 7,5.1076, f = 1000 [Hz], and included in the
interval between 50s and 100s (see Figure 2). On the one
hand, in Figure 3 a) and b), the KFHO assumes R = 1073 to
deal with the noise from (29), at the expense of reducing the
accuracy when the noise (29) is absent. On the other hand,
assuming R = 1077 (in Figure 3 c¢) and d)) to increase
the f. estimate precision, in the intervals when (29) is not
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Figure 3.
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Estimation with initial conditions equal to zero. Figures (a) and (c) show the excitation force and the estimates, figures (b) and (d) show the

error in each estimation. For (a) and (b) R = 10~3. For (c) and (d) R = 10~7.

zero, a considerable degradation in fe appears. As a result,
although it is well known that noise covariance matrices have
a significant impact on the obtained estimates, the proposed
HSMO is capable of matching the results obtained with the
KFHO without changes in the observer structure, such as
adaptive estimation of the covariance matrix [24].

V. CONCLUSIONS

The present paper develops a novel sliding mode-based
unknown input observer. The proposal is a homogeneous
structure, which guarantees finite time convergence of the
estimation error associated with the homogeneous part of
the observer, with asymptotically optimal performance. The
latter means that, in the absence of measurement noise,
the estimation is exact. In addition, the advantages of the
proposal include simplicity, provided a Lipschitz bound is
the only essential design parameter, the possibility to reject
unbounded noises, and a low computational burden for its
real-time implementation.

The accuracy of the proposed HSMO is analysed by com-
paring the estimation results against a KF with a harmonic
oscillator, a typical observer utilised in the wave energy
field. The results show that this paper proposal is capable
of matching the results obtained with the KFHO under a
Gaussian measurement noise assumption and improving the
results with unbounded noises, without the requirement of
covariance matrix adaptation.
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