
Innovations in Renewable Energies Offshore – Guedes Soares & Wang (Eds) 
© 2025 The Author(s), ISBN 978-1-032-90557-0

Health aware control of wave energy converters: Possibilities and 
challenges
A. Ziaei, H.A. Said & J.V. Ringwood
Centre for Ocean Energy Research (COER), Department of Electronic Engineering,  
Maynooth University Maynooth, Co. Kildare, Ireland

ABSTRACT: Wave energy converters are devices that convert the kinetic and potential energy of waves to 
electricity. Although wave energy devices show promise in meeting the world’s energy needs, they currently 
have a lower technology readiness level (TRL) than their solar and wind counterparts, resulting in a higher leve-
lised cost of energy (LCoE). Therefore, LCoE is the primary performance function to be minimised, but LCoE 
is relatively complex to be calculated directly, particularly considering the high level of uncertainty in operational 
costs (OpEx). Accordingly, control researchers have, to date, considered captured energy as a surrogate perform-
ance function for LCoE since absorbed energy is a more direct and measurable control objective. Nevertheless, 
the energy-maximising controllers deleteriously affect the device lifetime, leading to an increase in OpEx. This 
paper aims to find possible ways to compensate for the adverse effects of energy-maximising controllers on 
OpEx by considering lifetime metrics such as accumulated fatigue damage, reliability and remaining useful life 
(RUL) in the controller design process in order to reach an acceptable trade-off between captured energy and 
device lifetime. The obstacles and opportunities for future research will also be covered.

1 INTRODUCTION

As deposits of fossil fuels diminish, and concern 
rises over climate change, humankind looks at 
alternatives, such as renewable energies. Renew-
able energy resources are essential to our future 
since they are abundant and naturally replen-
ished. One such renewable energy resource is 
ocean waves with a huge untapped potential to 
provide energy, amounting to 32,000 TWh/year 
globally (Reguero et al. 2015). Wave energy 
converters (WECs) are the devices to harness 
wave energy, and there are hundreds of WEC 
prototypes reported in the literature (Ringwood 
et al. 2023). The wave energy industry is still in 
its infancy, with WECs lagging behind other 
renewable energy technologies, such as wind 
turbines, in terms of their technology readiness 
level (TRL) (Guo & Ringwood 2021) and higher 
levelised cost of energy (LCoE). In this regard, 
the development of WEC control technology is 
viewed crucial for enhancing the economic feasi-
bility of wave energy projects by reducing their 
LCoE.

LCoE is usually defined over a project lifetime (in 
years) as (Ringwood et al. 2023):

where Rd is the discount rate, Yr is the project lifetime 
(in years), and PV is the present value of a quantity, 
such as Q. The three primary LCoE parameters, Ec, 
CapEx, and OpEx, are defined as follows:

• CapEx (capital costs): Typically, CapEx covers 
the cost of one converter and installation, as 
well as the cost of electrical cabling, moorings, 
substation, and electrical installation (Astariz & 
Iglesias 2015).

• OpEx (operational costs): Generally speaking, 
OpEx consists of charges for operation and main-
tenance (O&M), insurance, ongoing business, 
administrative, and legal services (Clark et al. 
2019).

• Ec(captured energy): Ec is defined as the integral 
of the absorbed power:
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where uðtÞ is the control force and x2ðtÞ is the vel-
ocity of the device (see Section 2 for more detail), in 
the case of mechanical energy.

The problem with considering LCoE as 
a performance function is that LCoE is not calculated 
in real-time, while controllers have to operate in real- 
time. Secondly, there is a high level of complexity in 
the LCoE calculation itself, considering the substan-
tial uncertainty in OpEx evaluation (Astariz & Igle-
sias 2015). As a result, control researchers use 
maximum captured energy as a surrogate measure of 
minimum LCoE (Ringwood et al. 2023), operating 
exclusively on the denominator of (1). However, 
energy-maximising WEC controllers exaggerate the 
device motion, as illustrated in Figure 1, which may 
have an adverse effect on the device longevity. Con-
sequently, the exaggerated device motion may lead 
to lifetime degradation and consequent increases in 
OpEx (Zurkinden et al. 2015). Hence, it is crucial to 
include a metric for assessing the adverse effects of 
the controller into the WEC control formulation to 
enhance device lifetime.

Generally, there can be two distinct ways to reduce 
adverse effects of the controller on the device lifetime: 
redesigning (robustifying) the system (increasing 
CapEx) and lifetime-aware control (constant CapEx). 
In the first approach, a device is built strongly enough 
to withstand lifetime degradation, whereas the control 
input modulation enhances the device lifetime in 
the second approach, though with a possible penalty 
on power production. In the literature, many papers 
consider redesigning a WEC to reach a longer lifetime 
(Ferri et al. 2014, Nielsen et al. 2017), but little atten-
tion is paid to lifetime-aware control (Hoffmann et al. 
2023). Lifetime-aware control is important since 
upgrading or changing a component to reach 
a specific lifetime level is not economic when 
a simple control law modulation may result in the 
same result. Redesigning the system is only needed 
when it is impossible to enhance the lifetime by con-
trol law modulation. Designing a lifetime-aware WEC 

controller presents challenges, particularly concerning 
the time scales associated with OpEx, typically calcu-
lated over lifetime of the device, and control, usually 
in real-time. Hence, there is a need to address these 
challenges by defining a sensible objective function 
and reconciling time-scale issues.

To this end, the main contribution of this paper is 
to define the lifetime-aware control structure for 
WECs and to find a lifetime-aware surrogate meas-
ure of LCoE in real-time with the help of possible 
lifetime evaluation metrics, such as accumulated 
fatigue damage (Muñiz-Calvente et al. 2022), reli-
ability (Rausand & Hoyland 2003) and remaining 
useful life (RUL) (Kim et al. 2017).

The remainder of the paper is as follows: Section 2 
gives a general overview of WEC mathematical 
modelling. Section 3 defines the lifetime-aware con-
trol problem structure, while Section 4 investigates 
possible real-time metrics for degradation descrip-
tion. Section 5 discusses the pros and cons of the 
proposed degradation descriptions. Finally, conclud-
ing remarks are given in Section 6.

2 WEC MODELLING

Without the loss of generality, the motion of a WEC, 
for single-degree-of-freedom, can be written in the 
body-fixed frame using Newton’s second law as fol-
lows (Faedo et al. 2022) and (Giorgi & Ringwood 
2017) (Henceforth, the dependency of variables on t 
will not be shown if it is clear from the context.):

where z and _z are the displacement and velocity of the 
device, η is the undisturbed free-surface elevation, fPTO 
is the control force, provided by a power take-off 
(PTO), and fhydro is the superposition of all hydro-
dynamic forces, interacting with the device depicted in 
Figure 2.

Figure 1. Operational (phase) space of an uncontrolled and 
controlled WEC device (Windt et al. 2021).

Figure 2. Simplified illustration of a wave energy con-
verter, operating in a single (heave) degree of freedom.
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To obtain a state-space representation for (3), one 
can propose a state vector x ¼ x1; x2½ �

T
¼ z; _z½ �T, 

alongside a control input as u ¼ fPTO. As a result, the 
general non-linear state-space model is written as:

where y represents the system output.
Furthermore, the main physical constraints in 

WECs are mathematically defined (Faedo et al. 
2017) as:

where x1 max, x2 max and umax are positive scalars 
representing maximum displacement, velocity, and 
control force, respectively.

3 HEALTH SENSITIVE CONTROL PROBLEM 
FORMULATION

The essence of a lifetime-aware control problem is 
finding a suitable trade-off between maximising 
energy and minimising maintenance costs by modu-
lating the control law, assuming a fixed amount of 
CapEx. Therefore, the LCoE in (1) can be rewritten 
explicitly recognising terms sensitive to the control 
action, u:

where LCoECS is the part of LCoE which is sensitive 
to u, OpExCSðuÞ denotes operational expenses dir-
ectly related to the controller operation. It should be 
noted that CapEx in (6) is assumed as a constant (i.e. 
CapEx ¼ c, c is a positive scalar).

It is worth noting that LCoECS is not calculable in 
real-time; hence, a new performance function such 
as J in (7) is defined as an alternate measure of 
LCoECS in real-time for designing a lifetime-aware 
controller. Therefore, the following multi-objective 
optimisation (MOO) problem (Khezri & Mahmoudi 
2020) based on J can be formulated as:

where χðuÞ is degradation.

The multi-objective performance function J is 
a better interpretation of LCoECS in real-time than 
a single performance function such as Ec, since not 
only the adverse effects of the controller on lifetime 
is considered in J , but also OpExCS can be calculated 
by an unknown function, such as F, with respect to 
values of degradation χðuÞ (i.e. OpExCS ¼ FðχðuÞÞ). 
However, the current paper is focused on finding 
possible real-time descriptions of χðuÞ (Section 4) to 
solve the multi-objective optimisation problem 
in (7).

Figure 3 shows the required steps needed to be 
taken to calculate a specific health-sensitive control 
law from consideration of LCoECS (the upper level) 
and mapping it to a real-time performance function 
such as J (the lower level) to ranking Pareto-optimal 
solutions (Emmerich & Deutz 2018), based on cer-
tain criteria.

4 STRATEGIES FOR DEGRADATION 
DESCRIPTION

This section presents possible descriptions for deg-
radation χðuÞ in (7) based on lifetime metrics, such 
as accumulated fatigue damage, reliability and 
remaining useful life (RUL).

4.1  Accumulated fatigue damage

WECs operating in harsh oceanic environments are 
exposed to cyclical loading that leads to a physical 
phenomenon, namely fatigue (Zurkinden et al. 2015, 
Nielsen et al. 2017). In general, fatigue happens at 

Figure 3. Structure of health-sensitive control problem.
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a microscopic level when a material is under repeated 
stress, facilitating the growth rate of a tiny crack in 
the material structure; finally, the crack leads to the 
failure of a subsystem or even the complete system as 
time elapses (Shigley et al. 2011). The primary 
reason for cyclical loading in WECs is the interaction 
between the control force and existing hydrodynamic 
forces (i.e. fPTO � fhydroðz; _z; η) in (3)), coupled with 
the harmonic nature of the wave excitation force.

To evaluate fatigue, the damage due to cyclic 
loading is accumulated over time. Therefore, to 
obtain accumulated damage, in the first step, refer-
ence S-N curves (S-N defines the number of cycles 
(N) to failure based on a stress range (S)) (Wöhler 
1870) of materials that a component contains, should 
be obtained. Next, stress-time data (load history) are 
collected; an algorithm, such as rainflow counting 
(Muñiz-Calvente et al. 2022) transforms stress-time 
data into stress-cycle data. Finally, using Miner’s 
rule (Miner 2021), the accumulated fatigue damage 
(AFD) can be computed (Sanchez et al. 2018) as:

where cW and K are material properties, N is 
number of cycles, and sj is the stress range in 
the cycle j. In (Sanchez et al. 2018), χAFDðuÞ
has been calculated in real-time using an online 
rainflow counting algorithm for blade root 
fatigue of a wind turbine. Therefore, such 
a real-time fatigue calculation method can poten-
tially be used for health-sensitive control of 
WECs.

4.2  Reliability

Generally, reliability is defined as the ability of 
a system, subsystem, or component to perform 
a specific task under certain operational and environ-
mental circumstances within a period (Rausand & 
Hoyland 2003). This subsection investigates how it is 
possible to define degradation χðuÞ as a function of 
deterministic and stochastic reliability. Although the 
strategy based on redundancy can be categorised as 
deterministic reliability, it is analysed separately due to 
its importance.

4.2.1 Deterministic reliability
Deterministic reliability is defined as (Rausand & 
Hoyland 2003):

where λðtÞ is the failure rate (number of failures per 
unit of time).

Although component failure rate is a function of 
time (i.e. λðtÞ), a constant failure rate under specific 
operating conditions is calculated as a nominal fail-
ure rate. Therefore, the failure rate of a component 
does vary with time under various loading condi-
tions. For example, if an actuator in a control system 
is considered, the failure rate λðtÞ, based on control 
input (load) u, can be described (Salazar et al. 
2017) as:

where λnominal is the nominal failure rate of the actu-
ator, and β is a constant. So, the degradation of the 
actuator can be calculated as:

The big challenge in deterministic reliability is 
obtaining λnominal for WECs, where failure data is 
scarce in the wave energy sector (see Section 5).

4.2.2 Stochastic reliability
Probabilistic reliability is used when no specific data 
on the failure rate of a component is available. 
Hence, reliability is defined as failure probability 
(R ¼ Pf ), based on a reliability index (η) of the most 
probable failure point (Ambühl et al. 2015):

where the � is the standard normal distribution 
function.

Pf in (12) can be calculated either by Monte 
Carlo Simulation (MCS) (Mooney 1997) or by 
a first-order reliability method (FORM) (Kolios 
et al. 2018). Nevertheless, the real challenge is that 
(12) is not based on system variables, such as u. 
Therefore, the multi-objective problem in (7) cannot 
be developed. However, in a specific case, if only 
actuator (PTO) degradation is considered, the deg-
radation can be written as a general stochastic pro-
cess, dependent on control input and probabilistic 
reliability. For example, in (Zhang et al. 2022), actu-
ator degradation is regarded as a Winner pro-
cess (WP):

where ’0 is the initial degradation measure; μ0, σ and 
α are known parameters specified by a Kalman filter; 
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and BðtÞ shows standard Brownian motion 
(BðtÞ � Nð0; tÞ), which represents stochastic degrad-
ation dynamic. Therefore, the augmented model of the 
system, based on probabilistic reliability, can be 
described, for a general linear time-invariant 
system, as:

where ’U ¼ ’ � ’0 is the failure threshold; � is the 
standard normal distribution; A;Bu and Bd are 
system matrices; and dðtÞ is a disturbance. Finally, 

a term such as ωχ;iðtÞ χwpðtÞ � rχðtÞ
h i�

�
�

�
�
�

2

2 
can be 

included in performance function (7), where rχðtÞ is 
the reference degradation path, and ωχ;iðtÞ is a time- 
varying weight based on RðtÞ. A similar stochastic 
reliability measure can be used for the linearised 
model of WECs, where dðtÞ is wave excitation force.

4.2.3 Redundancy
A further strategy is based on redundancy and actu-
ator distribution. Redundancy can be considered as 
a contingency plan when enhancing lifetime through 
one actuator/sensor is impossible. Consider an LTI 
control system (Chamseddine et al. 2014) as:

where vdðtÞ is the desired control effort calculated by 
a nominal controller. Therefore, control allocation 
aims to find a u which leads to vdðtÞ. The control 
allocation performance function is written (Cham-
seddine et al. 2014) as:

where WðtÞ ¼ diag w1ðtÞw2ðtÞ � � �wiðtÞ � � �wmðtÞ½ �ð Þ
is the weight matrix, which specifies the actuator pri-
ority level. WðtÞ is updated based on the global 
deterministic actuator reliability (e.g. MIT rule- 
based reliability in Figure 4):

where α is the adaptation rate and RgðuÞ is the global 
deterministic reliability. The control allocation pro-
cedure is naturally independent of the nominal con-
troller, depicted in Figure 4. However, the actuator 
distribution control law (i.e. u) can be augmented 
with the nominal controller to improve lifetime. For 
example, for WECs with more than one PTO, such 
as the Ocean Harvesting Infinity WEC (Technology 
- Ocean Harvesting), the multi-objective optimisa-
tion problem in (7) can be rewritten based on 
a reference virtual control input vdðtÞ instead of uðtÞ. 
Therefore, the degradation χRg

ðvdðtÞÞ based on 
global deterministic reliability RgðvdðtÞÞ, similar to 
(11), is obtained as:

4.3  Remaining Useful Life (RUL)

Dissipated energy is reflective of degradation since 
wear in mechanical systems, such as a friction drive 
system, accompanies energy dissipation (Obando 
et al. 2021). For example, dissipated energy for 
a two-mass flexible drive train of a wind turbine can 
be modelled (Felix et al. 2023) as:

where ωr and ωg are rotor and generator angular vel-
ocities, ED is dissipated energy, PD is dissipated 
power, and Bdt is the torsion damping coefficient. 
So, the lifetime-aware control structure can be repre-
sented in Figure 5, where λ� is the wind intensity, 
which is a reference of the system. So, dissipated 
energy is controlled by reference modulation as:

Figure 4. Lifetime enhancement based on control alloca-
tion. Adapted from (Chamseddine et al. 2014).
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where Δλ is the output of the RUL controller, gen-
erated based on the estimation of degradation 
χ̂ED
ðtÞ ¼ ÊDðtÞ and a reference RUL (for construct-

ing desired dissipated energy).
For WECs, this idea can be investigated as refer-

ence velocity modulation in approximate velocity 
tracking (AVT) control structure (Ringwood et al. 
2023):

where vrefn is the new reference velocity, vref is the 
old reference velocity and Δv is the output of a RUL 
controller. It is worth noting that the reference modu-
lation law in (22) is not in the MOO problem format 
given in (7).

5 DISCUSSION

In this section, all degradation description strat-
egies are evaluated based on implementation 
requirements and issues to consider when each 
strategy is used. At the section end, Table 1 sum-
marises the key points discussed in this section 
and shows the severity of issues and requirements 
with colour coding.

The primary problem for all strategies described 
in Section 4 is failure data scarcity in the wave 
energy sector, while different types of degradation 
data is required for the different methods. Even 
though some references like (deCastro et al. 2024) 
have gathered operational data for various WECs, 
only a few researchers have tried to specify failure 
patterns based on operational data. For example, in 
(M’zoughi et al. 2024), failure patterns of a Wells 
turbine in an onshore oscillating water column are 
gathered through operational data. Failure patterns 
can help estimate nominal failure rates and reference 
degradation path models of components. However, 
the study in (M’zoughi et al. 2024) focuses only on 
a specific type of WEC and PTO subcomponent (i.e. 
a Wells turbine).

Starting with deterministic reliability in Sec-
tion 4.2.1, the main requirement is the nominal fail-
ure rates λnominal in (10). Considering failure data 
sparsity, the nominal failure rate is estimated, using 
failure rates from other industries (Rinaldi et al. 
2018), as follows:

where λB is the nominal failure rate of a component in 
a specific industry, πE is an environmental factor for 
considering the operational environment, and πFM is 
the failure mode factor. After finding λ̂nominal for each 
component, the global failure rate can be achieved 
based on a reliability block diagram model of the 
system (see Figure 6). Since all components in 
Figure 6 are connected in a series structure, the global 
failure rate of a subsystem, such as PTO, is the add-
ition of failure rates of components inside PTO (Rau-
sand & Hoyland 2003). For example, the global failure 
rate of the PTO in Figure 6 is the addition of failure 
rates of the throttle valve, blades, rotor hub, shaft, gen-
erator, and back-to-back converter (i.e. AC/DC and 
DC/AC blocks) . The estimated nominal failure rate 
λ̂nominal in (23) has a large uncertainty compared with 
the real failure rate λnominal. However, the uncertainty 
can be reduced using accelerated testing and adjusting 
πFM by obtaining a failure mode and effects analysis 
(FMEA) table (Weller et al. 2015).

In contrast to deterministic reliability strategies, sto-
chastic reliability (Section 4.2.2) does not need the 
failure rates of components, but it needs a reference 
degradation path model rχðtÞ for the actuator (PTO). 
The challenge is that it is difficult to consider an 
accurate degradation path model for a PTO since, at 
least, we need some failures in the PTO to construct 
a reference degradation path model. In addition, sto-
chastic reliability cannot give an accurate representa-
tion of how each competent inside PTO leads to the 
failure of PTO itself, since stochastic reliability in Sec-
tion 4.2.2 does not use a reliability block diagram. 
Similar to the reference degradation path model in sto-
chastic reliability, the required data for the RUL strat-
egy is a reference RUL. Therefore, a PTO must fail to 
know how much overall dissipated energy leads to 
a failure. In addition, the RUL method is the only one 
that does not have the multi-objective optimisation 
structure in (7), so it may not lead to a better trade-off 
between captured energy and OpEx.

Among the strategies presented in Section 4, 
accumulated fatigue damage has less uncertainty in 
the requirement phase, since every material has 
a unique S-N curve, and calculating stress data is 
straightforward with numerical methods, such as 
finite element analysis (Bhavikatti 2005). However, 
accumulated fatigue damage can only be used for 
specific components inside the PTO, so it is challen-
ging to calculate the damage for the complete PTO. 
In addition, the accumulated damage needs to be 

Figure 5. RUL control structure for deteriorating wind tur-
bine with a flexible-shaft drive-train (Felix et al. 2023).
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linearised to find its relation with system variables, 
such as the control input u (Sanchez et al. 2018).

6 CONCLUSIONS

This paper investigates the lifetime-aware control 
problem for WECs. To develop a lifetime-aware 
controller, at the first step, a degradation description 
in real-time should be defined, which correlates con-
trol input with degradation. Therefore, it is studied 
how a degradation model for lifetime-aware control 
can be obtained based on well-known lifetime met-
rics, such as reliability, accumulated fatigue damage 

or remaining useful life (RUL). Each strategy has its 
pros and cons, but the scarcity of failure data and the 
existence of many diverse types of WECs are 
common problems. Among all the strategies, deter-
ministic reliability methods, with the help of the reli-
ability block diagram and an FMEA table, can help 
to understand better how each subsystem degrad-
ation leads to complete system degradation. Never-
theless, the effectiveness of different methods is 
highly dependent on the unique characteristics and 
operational conditions of each WEC. Therefore, 
a suitable degradation evaluation metric should be 
selected before the lifetime-aware controller design 
stage to achieve more optimal results.

Figure 6. Reliability block diagram for an onshore oscillating water column (Mueller et al. 2016).

Table 1. Evaluation of ideas (i.e. accumulated fatigue damge (AFD), Deterministic reliability (DR), Stochastic reliability 
(SR), Deterministic reliability-redundancy (DR-Red), and RUL). More severe conditions are shown in red, almost severe in 
orange, and less severe in green.
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In future studies, there are some research gaps to 
investigate. First, it is essential to find a suitable 
function to calculate OpEx from real-time degrad-
ation descriptions. Second, it can be investigated 
how the failure data sparsity problem in each degrad-
ation description is addressed with accelerated test-
ing. Third, it is necessary to focus on solving the 
proposed multi-objective optimisation problem to 
reach an acceptable trade-off between captured 
energy and lifetime enhancement.
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