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ABSTRACT: In wave energy converters (WECs) design, due to the inherently oscillating nature of waves, 
rectification emerges as an essential requirement. Particularly, active mechanical motion rectification (AMMR) is 
a novel alternative to include in power take-off systems operating with linear-rotary generators. The primary 
objective of this mechanism is to ensure controlled unidirectional rotation speed in the generator, aiming to miti
gate losses caused by low rotational speed and enhance overall system efficiency. The AMMR operates with 
a discontinuous switching law to connect and disconnect the WEC body and the generator. Thus, although con
ceptually simple, the AMMR inclusion significantly increases the complexity of the WEC design. Particularly, 
ensuring the stability of the system remains an unresolved challenge. To address the latter aspect, in this paper, 
the AMMR-based WEC is modelled as a switched linear system, assuming a dwell time specification for the 
switching signals. Then, sufficient and necessary conditions to guarantee closed-loop stability are found. Com
plementary, provided that the system stability is dependent on both control inputs, the continuous-time electro
magnetic torque applied by the generator, and the employed AMMR switching law, stability regions to assess 
future control development are found, while providing a comprehensive analysis of the (in)stability results.

1 INTRODUCTION

In recent years, extensive research has been con
ducted to meet the ever-growing energy demand and 
solve issues related to the availability and mixture of 
world energy sources. Different non-polluting alter
natives have been studied, and particularly, ocean 
waves have emerged as a promising reservoir of 
renewable energy, presenting a pivotal opportunity 
in the quest for a carbon-neutral society. Nonethe
less, large-scale implementation of wave energy 
devices is still economically unfeasible. This is pri
marily due to the numerous challenges to designing 
cost-efficient and robust wave energy converters 
(WECs). In this context, innovation and co-design- 
based approaches (Garcia-Sanz 2019) (Peña-Sanchez 
et al. 2022) are essential to address the design prob
lems and limitations that wave energy conversion 
currently possesses. Irrespective of the employed 
WEC, the power take-off (PTO) subsystem assumes 
a pivotal role in converting kinetic energy into elec
tricity (Liu et al. 2020). Among the desired PTO 
characteristics are high energy conversion efficiency, 

high system reliability and low maintenance require
ments. Therefore, the selection of an appropriate 
PTO type, along with an associated energy- 
maximising control algorithm, significantly influ
ences the performance, efficiency, and ultimately, 
the economic cost of WECs (Ringwood, Zhan, & 
Faedo 2023). Acknowledging the importance of 
PTO design, a multitude of PTOs have been devel
oped, each grounded on different concepts (Guo & 
Ringwood 2021)(Ringwood et al. 2023). The PTO 
studied in this paper, is a particularly interesting and 
relatively novel design, termed an active mechanical 
motion rectifier (AMMR) based PTO. The AMMR 
(See Figure 1) primary objective is the rectification 
of mechanical motion. The input shaft of the AMMR 
is a bi-directional rotational motion and, by 
a suitable selection of commutation intervals, the 
output shaft of the AMMR rotates in a single direc
tion. In WECs, the AMMR may be included to pre
vent the generator from crossing zero velocity. This 
latter aspect is essential, particularly considering that 
the low efficiency of linear rotary generators at low 
speed, reduces the overall WEC wave-to-wire 
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efficiency (Liang et al. 2017)(Li et al. 2021). Com
plementary, the AMMR inclusion in the PTO design, 
brings two important features. Firstly, decoupling 
between the generator and WEC is possible, allow
ing the inclusion of a flywheel with the generator, 
without major impacts on the average harnessed 
energy (Li et al. 2020)(Yang et al. 2021). Secondly, 
the mechanical rectification is conducted by connect
ing and disconnecting two electromagnetic clutches. 
These clutches may be arbitrarily engaged to connect 
and disconnect the WCB from the generator, thus, 
the command signals for the clutches may be 
regarded as a switching control signal (Fornaro & 
Ringwood 2024b)(Fornaro & Ringwood 2024a). 
Consequently, the AMMR inclusion in the PTO 
design increases the complexity analysis of the 
AMMR-based WECs and requires the development 
of specific tools for the analysis and design of dedi
cated controllers, capable of maximising power 
output and increasing the overall system efficiency. 
This novel AMMR-based PTO also brings new 
engineering challenges to overcome. First, interest
ingly, most of the existing literature deals with the 
design of stabilising switching signals, when the 
closed-loop dynamics of the system are known. 
However, in the AMMR case, the design of both 
control inputs (the switching law and the generator 
torque) may be considered. Second, although in 
most control applications the reference is known, to 
maximise the energy extracted from the oscillating 
waves, a wave excitation force estimate is required 
(Peña-Sanchez et al. 2019)(Mosquera et al. 2024). 
This renders the optimal reference time varying and 
unpredictable. As a result, the stability of the 
AMMR-based WEC must be guaranteed for a wide 
range of controller designs.

Because of the switching nature of the AMMR- 
based PTO, guaranteeing the stability of the closed- 
loop controlled WEC is not trivial. Thus, before 
addressing the energy-maximising control design, 
developing control-oriented methods to analyse the 
stability of the system in realistic operating condi
tions is essential. To solve this latter aspect, in this 
paper, the AMMR-based WEC dynamics are ana
lysed, and tools to guarantee stability in realistic sea 
realisations, in which the wave resource exhibits 
a panchromatic behaviour, are provided. The devel
opments introduced in this paper, permit an evalu
ation of the closed-loop system stability considering 
a state feedback control and dwell-time specifica
tions for the switching sequences. While the results 
are focused on low-order controllers, the provided 
stability conditions are general, and may also be 
employed for full-order linear controllers analysis. 
The present work is organised as follows. In section 
2, the switched model for the AMMR is developed. 
In section 3, the tools for the stability analysis of the 
AMMR-based WEC are developed. Then, in Sec
tion 4, illustrative examples are presented. Finally, in 
Section 5, the paper conclusions are presented.

2 SWITCHED ACTIVE MECHANICAL 
MOTION RECTIFIER-BASED WEC MODEL

To proceed with the stability analysis of the AMMR- 
based WEC, developing a complete model, capable 
of representing the non-linear effects introduced by 
the AMMR, is required. To that end, it is assumed 
that the AMMR input may be connected to a variety 
of wave capture bodies (WCB) (See Figure 1). This 
permits obtaining general results, which could be 
easily particularised to different WCBs.

To obtain a complete model for this system, the 
WCB dynamics, the AMMR, the control structure, 
and the employed generator must be considered. 
Thus, in this section, the dynamics of each compos
ing subsystem are presented and discussed.

2.1  Generic wave energy converter linear model

In this subsection, aiming to develop generic results 
applicable to a wide variety of wave converters, 
a generic WCB is assumed. The interested reader 
may refer to (Yang et al. 2022)(Fornaro & Ringwood 
2023) and (Li et al. 2021) for preliminary results 
obtained employing the AMMR-based PTO with 
a two-body oscillating point absorber, and an oscil
lating wave surge converter, respectively.

Regardless of the employed WCB, the input to 
the AMMR must be a one-degree-of-freedom bi- 
directional rotational motion. Therefore, for the ana
lysis of the WCB model, a single-degree-of-freedom 
device is assumed. In this context, the most wide
spread linear control-oriented model can be repre
sented as:

where θ is angular displacement, ~J is the WCB 
inertia, τr and τk are the radiation and hydrostatic 
restoring torques that define the free system 
dynamics, and τe and τu are the two external 
forces acting on the body: τe is the wave excita
tion torque, and τu is the torque provided by the 
PTO, which is employed to maximise energy 
extraction from τe. Also, assuming small displace
ment from an equilibrium position:

Figure 1. Closed loop structure including the AMMR and 
generator.
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where kx is the hydrostatic restoring force coeffi
cient. The radiation force may be defined in terms of 
a non-parametric linear convolution (Cummins 
1962):

where J∞ is the infinite frequency added-inertia, θ; _θ;
and €θ represent the angular displacement, velocity 
and acceleration of the WEC, respectively, and hr is 
the radiation impulse response kernel. Because of 
the nature of the system, the convolution operator 
describes a causal strictly passive system. Addition
ally, to approximate the convolution from (2), 
a linear, continuous-time, strictly proper, finite- 
dimensional system, is considered:

with F 2 R nr�nr Hurwitz, and G 2 R nr�1 and 
H 2 R 1�nr . Thus, x>

r ¼ ½xr1 ; …; xnr �. For further dis
cussion on �r, see (Pérez & Fossen 2008).

2.2  AMMR model

A simplified schematic of the AMMR gearbox is 
illustrated in Figure 2, where the three AMMR oper
ation modes can be appreciated. To refer to the differ
ent operation modes, the notation q 2 Q : � 1; 0; 1f g
is employed. With q ¼ 1 the positive clutch is 
engaged, with q ¼ � 1 the negative clutch is engaged 
and, with q ¼ 0 the clutches are disengaged.

During normal operation, the AMMR engages 
and disengages the generator and flywheel from the 
WCB. Thus, the transient response of the generator 
and flywheel must be considered in the model. To 
model the AMMR transient response, firstly, the 
losses are considered utilising a constant kb. Sec
ondly, a spring constant ks is included to model tor
sional effects on the AMMR gears. Complementary, 
the generator and flywheel losses are included in kb. 
Thus, the generator and AMMR dynamics are:

where _θg and €θg are the generator velocity and acceler
ation respectively, Jg lumps the generator and flywheel 
inertia, and τem represents the electromagnetic torque, 
applied to control the WCB using a continuous control 
action. τl represents the AMMR friction torque, τs the 
AMMR stiffness torque, q 2 Q : � 1; 1; 0f g are the 
discrete states of the switching signal σðtÞ.

2.3  Full switched linear WEC model

In this subsection, the switched model of the 
AMMR-based WEC is formulated. Considering 
equations (1) to (5), and the dependence on the dis
crete states q, the complete open-loop model of the 
AMMR-based WEC results:

where x 2 R n is x ¼ ½θ _θ xT
r
€θgτs�, and with:

Figure 2. Illustrative AMMR in operation. a) Direct coup
ling (Engaging the positive clutch). b) Indirect coupling 
(Engaging the negative clutch). c) Declutching the 
AMMR. In this scenario, the input and the output are 
decoupled.
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with the zero vectors and matrices taking the appro
priate dimensions. Also, τem is the control action to 
be designed employing the control output yu and 
J ¼ ~J þ J∞. Although the system dynamics change 
for the different values of q, the states x are continu
ous, while the control action τem may be discontinu
ous. It should be also noted that, although Dq ¼ 0 is 
generally the case, y is assumed to be a generic 
output employed for control design. Thus, 
Cq 2 R np�n, and Dq 2 R np�1, with np ¼ 3 being the 
order of the output employed for control design, 
assuming that the output consists of WCB position, 
velocity, and generator angular velocity. It is worth 
noting that, the second term in the direct transfer 
term matrix is zero without loss of generality.

3 STABILITY ANALYSIS FOR THE AMMR

Due to the inherent switching structure, guaranteeing 
the stability of the AMMR-based WEC is not trivial 
(Shorten et al. 2007). Thus, in this paper, the main 
goal is to analyse the stability of the WEC switched 
system, assuming different operating conditions for 
both the switching law and controller structure. Spe
cifically, is assumed:

• A time constraint for the switching signals, typ
ically referred to as dwell time specification. This 
indicates that the switching signal 
σðtÞ ¼ q 2 Q : � 1; 0; 1f g, 8t 2 ½tk; tkþ1Þ with 
tkþ1 � tk � T?. T? is called the application dwell 
time, and the switching signals that satisfy this con
dition are concisely written as: σðtÞ 2 DT?

• A pure state feedback controller. In accordance 
with (9), the controlled variables are θ, _θ and _θg.

• Only two states for the switching signal are con
sidered, provided that, the AMMR only connects or 
disconnects the WCB from the generator. 
Thus σðtÞ ¼ q 2 Q : 0; 1f g.

Formally, throughout this paper, the switched model 
adopted for the stability analysis is a closed loop struc
ture, which implicitly includes the controller structure:

where AσðtÞ, CσðtÞ and BσðtÞ, represent closed-loop 
matrices of the controlled switched system, and the 
switching function σðtÞ : Rþ ! 0; 1f g satisfies the 
dwell time specification. The discontinuity points in 
σðtÞ, are known as switching instances. Because 
a pure state feedback controller is assumed, the triple 
that defines (10) is:

3.1  Dwell time stability conditions

Since the stability of (10) is independent of τe, the sta
bility of _x ¼ AσðtÞx is analysed, considering, without 
loss of generality, that τe ¼ 0. Then, the following 
linear matrix inequality (LMI) condition is derived 
from the developments in (Geromel & Colaneri 2006):

which are built assuming positive constants 
ðQ; S;RÞ, and defining:

and P?i being the (infinite horizon) stabilising solu
tion of the algebraic Ricatti equation associated 
with (14):

If conditions (12) hold, then system (6) is dissipative 
for switching signals σðtÞ 2 DT . However, the LMI 
(12) does not provide information on the effects that 
cause the system instability. Thus, the proposal pre
sented in this paper consists of recursively evaluating 
(12) for different controller gains. Additionally, 
because dissipative systems with positive Q;R; S are 
also very strictly passive (For further details please 
refer to (Kottenstette et al. 2014)), the analysis can be 
conducted without including the radiation dynamics in 
the system, alleviating the computational burden. This 
is because the radiation dynamics are also passive, and 
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feedback interconnection of passive systems does not 
modify the closed-loop passivity of the system.

As illustrated in the results (Section 4), the 
instability is created by differences in the transient 
response of the system. However, it is also depend
ent on the selected T: Thus, the first required step is 
obtaining a realistic application dwell time T?:

3.2  Bounds for the application dwell time

The AMMR-based WEC application dwell time 
depends on two different effects. The first one is the 
physical limitation of the AMMR electromagnetic 
clutches. In (Yang, Huang, Congpuong, Chen, Mi, 
Bacelli, & Zuo 2021), it is stated that the AMMR 
cannot be connected or disconnected at a rate higher 
than 0.1s. The second one, however, is obtained from 
considerations for a realistic application scenario. Since 
the AMMR primary function is to rectify the WCB 
velocity, four connections per period of the wave exci
tation force are expected. Therefore, an approximation 
of the minimum required switching time would be 
T? � 2π=ðω?5Þ, with ω? being an upper bound for 
energetic waves in a particular sea state.

In the following section, to illustrate the impact of 
the dwell time selection for the stability analysis, 
results considering different times T are shown.

4 NUMERICAL EXAMPLE

To perform a preliminary evaluation of the proposed 
methodology, the AMMR is assumed to operate with 
a heaving point absorber buoy (Mosquera, Fornaro, 
Puleston, & evangelista John V. Ringwood 2024), with 
parameters as presented in Table 1. This is a one- 
degree-of-freedom device, which satisfies (1). Then, 
employing the conditions from Section 3, the stability 
regions are computed evaluating (12) for different 
values of T?, and locations for the closed-loop poles of 
the controlled system (i.e., when q ¼ �1). Employing 
the conditions from Table 1, the triple from system, 
employed for the stability analysis (6) reads as:

Also, in this section, condition (12) is ana
lysed with Q ¼ 0, R ¼ 1 and S ¼ 1=2, for which 
every (Aq;Bq;Cq) must be strictly output passive. 

It is worth noting that if the dissipativity condi
tion (12) is satisfied, then the system that 
includes the radiation dynamics is also stable. 
This is because as mentioned in Section 3, the 
radiation subsystem is also passive, thus, in this 
section, is not included.

In the following Subsections, the cases with T? ! 0 
and T?≠0 are separately analysed. Regarding the con
troller parameters, it is assumed that the gain 
K ¼ ½k1 k2 k3� is employed, where k1 and k2 are the 
feedback gains employed to control the WEC position 
and velocity respectively, and k3 controls the generator 
velocity.

The stability region depends on the selection of the 
gain K and, the transient response of the system is 
not only affected by the WCB dominant poles but 
also by the generator dynamics. Thus, as k3 is modi
fied, the stability region also changes. This latter 
aspect is essential, not only for the design of the con
trol but also for the design of the system itself, pro
vided the generator inertia and other AMMR 
parameters define the dynamics of the faster eigen
value of the system. Considering the latter aspects, in 
this preliminary analysis, it is assumed that the 
system dominant eigenvalues correspond to the WCB 
structure. Therefore, the gain k3 is assumed constant, 
and the effects of controlling the dominant poles of 
the system are analysed by varying k2 and k3.

4.1  Arbitrary switching

As mentioned in Section 3, to guarantee the passivity 
of the switched system, the radiation dynamics are 
not contemplated. Considering this latter aspect, the 
eigenvalues of the uncontrolled reduced system, 
with q ¼ 0; are presented in Figure 1, together with 
the eigenvalues of the discrete state q ¼ 1 for differ
ent values of k1 and k2. Intuitively, if the poles of the 
controlled system (q ¼ 1) are close to the poles with 
q ¼ 0; the system should remain passive, even con
sidering T? ! 0. This latter case is termed the arbi
trary switching case.

In Figure 1, the stability region for the arbitrary 
switching case is depicted, considering k3 ¼ � 200, 
variable gains k1 and k2, and T ¼ 0:001s. It can be 
appreciated that the stability region resembles 
a semicircle with a constant radius, determined by the 
imaginary part of the eigenvalues with q ¼ 0, in 
accordance with preliminary theoretical results 
(Shorten et al. 2007).

Table 1. Nominal AMMR system model employed for 
stability assessment.

AMMR and WEC parameters

Kgm2 Nm/rad N.A.

J 1; 46:105 kz 5; 57:105 nr 7
Jg 1; 46:104 kb 5:105 ks 0
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4.2  Dwell-time specification

This subsection analyses the case with T?40. A first 
remark is that, while a dwell time specification is 
a more relaxed condition for the stability of switched 
systems, finding a suitable bound for the minimum 
dwell time for a specific system is a challenging task. 
Indeed, the stability constraints (12) represent 
a conservative case (Geromel & Colaneri 2006) and, 
in practice, the stability region may not be precise.

Considering the mentioned aspects, to evaluate the 
effects of different T , three different scenarios were 
simulated, with T ¼ ½0:3; 0:4; 0:5; 2�, k3 ¼ � 200 
and varying k1 and k2. From Figures 4 to 6 can be 
appreciated how increasing the considered dwell time 
also increases the stability region. As larger values for 
T are considered, it can be appreciated how the stabil
ity region increases from the arbitrary switching case.

Regardless of the different results, there is 
a common aspect to all three scenarios: When the 
closed loop poles are too close to the origin, the 
system becomes unstable. This phenomenon is asso
ciated with the fact that a slow transient response 
also represents a slow energy-rate decay and, thus, 
only with a slower switching dwell time the system 
could preserve the dissipativity rate constraint 
defined in (12).

Regarding the obtained results, the following add
itional remarks are made. First, obtaining an 

analytical result for the presented bounds has eluded 
the community for systems with order higher than 2 
(Shorten et al. 2007). Thus, the presented results are 
focused in an area close to the origin, where solutions 
hold practical significance. For the same reason, the 
real axis is not analysed, considering it lacks practical 
relevance in the context of wave energy applications.

5 CONCLUSIONS

In this paper, the stability of a WEC operating with 
an AMMR was analysed. Employing mechanical 

Figure 4. Stable and unstable regions with T ¼ 0:3s.

Figure 6. Stable and unstable regions with T ¼ 0:5s.

Figure 3. Stable and unstable regions for T ¼ 0:001. Figure 5. Stable and unstable regions with T ¼ 0:4s.

Figure 7. Stable and unstable regions with T ¼ 2s.
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rectification, the system becomes switched and, 
since wave energy devices are inherently oscillating 
systems, instability arises as a natural result. How
ever, the stability depends not only on the controller 
parameters but also on the system dynamical charac
teristics, and on the specified dwell time condition 
for the switching law. In this context, the analysis of 
AMMR-based WECs stability plays an essential role 
to address, in the future, the design of energy- 
maximising controllers for these systems.

To obtain stability regions for the AMMR-based 
WEC, the AMMR dynamics were included in the 
model, also modelling the WCB as a linear system. 
Then, assuming a state feedback controller, an LMI sta
bility condition was formulated. This condition 
depends not only on the controller gains but also on the 
specified dwell time. Thus, considering a set of dwell 
time specifications, and gains for the state feedback 
controller, stability regions for the design of stable con
trollers were found, proving that increasing dwell time 
enhances the overall AMMR-based WEC stability and 
laying the foundations for future hybrid control design.

The presented method to analyse the stability of 
the switched system is versatile and of simple imple
mentation. Also, permits the evaluation of the stabil
ity of different controller structures. Furthermore, it 
is also generic, since the stability results are inde
pendent of the considered radiation dynamics. The 
extension of the results for other controller struc
tures, and of the LMI formulation, remain to be 
addressed in future work.
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