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ABSTRACT: To reach economic viability of wave energy converter (WEC) devices, the development suit-
able control logics is a fundamental step towards enabling commercial success. Given WECs nature, their con-
trol problem is of the energy-maximizing type. Control strategies are responsible of defining the proper control
action, maximizing energy while ensuring safe operations. The computation of this action often requires an
optimization process and the resulting control is said to be optimization-based. Usually, these optimizations
require a control-oriented model of the system, which is prone to potential uncertainty sources. In this context,
data-driven control strategies could provide a solution to the issues that usually characterize model-based logic.
Motivated by this, we examine, in this paper, the fundamental relations between the concept of WEC optimal
control, and the adoption of data in the optimization-based control computation, investigating intrinsic limita-
tions, and highlighting consequences and opportunities this choice leads to in the design of such algorithms.

1 INTRODUCTION

In the context of renewable energy, wave energy is
among the ones with most untapped potential (Mat-
tiazzo 2019). In contrast to other sustainable energy
solutions, like photo-voltaic (PV) or wind turbines,
wave energy converters (WECs) have not reached
technological maturity, with a consequent absence of
any well-established concept for the wave energy con-
version solution (Guo & Ringwood 2021). Trying to
move in this direction, in the context of wave energy,
several challenges have to be solved to efficiently cap-
ture all the energy that comes from waves motion.
Among such challenges, one of the most crucial is the
development of suitable advanced control strategies
(Ringwood 2020), since this has a direct influence on
the productivity and operational costs of WECs.

The control law must be able to adapt to the
changes that the deployment (marine) environment
features (in terms of excitation forces coming from the
sea), while, at the same time, managing to maximize
the energy extracted. Usually, the control strategies
that are employed in wave energy rely on
a (simplified) model of the system to compute the
required control action and, for this reason, are termed
within this paper as model-based. For ease of compu-
tation, such models are usually a linear representation

of the system, which neglects the presence of non-
linear effects, and any potential nonlinear phenomena
arising from its interaction with the environment, such
as nonlinear Froude-Krylov forces (Giorgi et al.
2020). However, with the purpose of trying to over-
come these simplifications, some novel strategies have
tried to describe also the nonlinearities that could char-
acterize the system in a control-oriented form (Faedo
et al. 2020). Nevertheless, this type of approach is not
free from other problems that characterize model-
based strategies, such as the inherent presence of mod-
eling uncertainty (Ringwood et al. 2020) due to the
differences between model and real system, especially
in any contribution related to hydrodynamics. As
a consequence of these issues, an increasing interest
can be observed for control strategies that can operate
without the requirement of a system model (model-
free) (Parrinello et al. 2020, Moens de Hase et al.
2021), or whose action is guided by data collected
online, directly from the system (data-driven) (Ander-
lini et al. 2017a, Anderlini et al. 2020).

Motivated by the interest that this latter type of con-
trol is generating within the wave energy community,
we analyze, in this paper, the relationship that occurs
between the choice of exploiting data in the control
strategy formulation, and the adopted strategy itself,
whenever an optimization process is performed. In
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particular, in Section 2, the energy-maximizing opti-
mal control problem that characterizes the WEC con-
trol is presented, together with a brief introduction to
wave energy conversion. In Section 3, the data-driven
control strategies, that adopt optimization in their for-
mulation, are presented and analyzed, highlighting
strengths and weaknesses. Finally, in Section 4, some
considerations are made with respect to the possibil-
ities and limitations that this type of approach could
offer in the WEC control problem solution.

2 WEC OPTIMAL CONTROL PROBLEM

This section introduces the WEC control problem,
highlighting the critical issues that an energy-
maximizing strategy, including systems constraints,
entails when applied in an environment continuously
excited by external disturbances, such as in the marine
case. In particular, the behaviour of an ideal WEC is
presented in Section 2.1, together with the main equa-
tions describing its motion, while the energy-
maximizing optimal control problem is formulated in
Section 2.2.

2.1 Wave energy converters modelling

For the sake of simplicity of exposition, we consider
a single1 degree-of-freedom (DoF) WEC device
throughout this paper, based on the schematic pre-
sented in Fig. 2.1. This type of device is commonly
constituted by a floating hull, able to extract energy
from a single DoF through the so-called power take-
off (PTO) system (actuator), as it is possible to see in
Figure 12. The equation of motion for such class of
devices can be given by3:

m€z ¼ fr þ f lhr þ fex þ f nl � fPTO; ð1Þ

where z is the device heave displacement, fr is the
radiation force, f lhr is the linear component of the
hydrostatic restoring force, fex is the wave excitation
force, f nl represents a potential source of nonlinear-
ity that depends on displacement z and velocity _z
(e.g. nonlinear hydrostatic effects or viscous drag
forces), and fPTO is the controllable force exerted by
the PTO. Apart from f nl, the terms in equation (1)
are normally modelled based on potential flow
theory. However, this representation is only an
approximation that is easier to be treated by real-
time control strategies. In fact, a variety of assump-
tions and associated set of approximations, are typic-
ally made when WECs are modelled for control

purposes. As a consequence, several uncertainties
are thus introduced, which can potentially influence
the performance of the computed control action,
whenever calculated through model-based control
strategies.

2.2 Energy-maximizing optimal control problem

As already introduced in Section 1, the main goal of
control strategies, in the WEC case, is the maximiza-
tion of the energy absorbed over a certain time inter-
val T ¼ ½a; b� �R

þ. If mechanical power is
considered (for the sake of simplicity), the instantan-
eous absorbed power is the product between the
PTO force fPTOðtÞ, and the device velocity _zðtÞ. In
this way, the control objective J can be formu-
lated as:

J fPTOð Þ ¼ 1

T

Z
T
fPTOðτÞ_zðτÞdτ; ð2Þ

where T ¼ b� a. It should be remembered, how-
ever, that the goal is not only to maximize energy,
but also to avoid the risk of damage to internal com-
ponents, in an attempt to preserve the life of the
entire device. With this aim, a set of limitations (i.e.
constraints) is often introduced along with (2). In
particular, it is usually possible to incorporate con-
straints on maximum displacement zmax, velocity
_zmax (Bacelli & Ringwood 2013), and control
force fPTO;max:

jzj � zmax;
j_zj � _zmax;
j fPTOj � fPTO;max;

8<
: ð3Þ

Figure 1. Simplified schematics of a WEC absorber.

1 Note that similar arguments can be made for multi-DoF devices (see, for instance, (Folley 2016)).
2 It is important to highlight that here we decided to present all the modelling through a heaving device, but similar considerations can be
done with different WEC working principles, and the following critical review of optimization-based strategies in data-driven control of
wave energy systems include all wave energy system technologies.

3 From now on, the dependence on t is dropped when clear from the context.
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with 8t 2 T , and zmax; _zmax; fPTO;max
� �

�R
þ.

Hence, in the general case, the optimal control prob-
lem (OCP) can be fully written as

f optPTO ¼ argmax
fPTO

J fPTOð Þ
s:t: :
WECdynamicsð1Þ;
Motion and input constraintsð3Þ:

ð4Þ

However, to perform the synthesis of the associ-
ated energy-maximizing controller, it may not be
necessary to directly solve the OCP online. In the
wave energy sector, in fact, there are two main cat-
egories of controllers: optimization-based and the
non-optimization-based controllers (Faedo et al.
2020). Within the first category, one can find all
strategies in which an optimization process is carried
out online at some point of the control action compu-
tation. Relevant examples of this class, in wave
energy applications, are model predictive control
(MPC) (Li and Belmont 2014, Faedo et al. 2017,
Bracco et al. 2020), spectral and pseudo-spectral
control (Auger et al. 2019), (Garcia-Violini & Ring-
wood 2021), and moment-based control (Faedo et al.
2021). The second category, i.e. non-optimization-
based control, encompasses those controllers that
attempt to maximize the extracted power by ’emulat-
ing ’ the so-called impedance-matching condition
(Faedo et al. 2022) for maximum power transfer. An
example is the Linear Time Invariant Controller
(LiTe-Con) (Garcia-Violini et al. 2020, Carapellese
et al. 2022). Despite the fact that this latter category
has certain advantages, such as computational effi-
ciency or ease of implementation, they struggle to
guarantee constraint satisfaction in a straightforward
fashion, and commonly provide the optimality con-
dition on the basis of fundamental principles arising
from the WEC equivalence with electric circuits,
rather than from the numerical solution of (4). For
this reason, and motivated by the interest in explor-
ing the relationship that occurs between exploitation
of a numerical optimization routine, and the usage of
data in control synthesis, we focus our analysis on
data-driven controllers that belong to the first class,
i.e. data-driven optimisation-based controllers for
WEC systems.

3 OPTIMIZATION-BASED WEC CONTROL:
DATA-DRIVEN STRATEGIES

As stated in Section 1, the design of suitable control
strategies for WECs is a crucial task in the develop-
ment of economically viable solutions. However, at
the same time, the WEC control problem is affected
by the nature of the marine and ocean environments.
These include, just to mention a few, the presence of
a persistent and non-negligible exogenous

disturbance force coming from the waves (i.e. the
wave excitation fex in (1)), the difficulty of obtaining
high-fidelity models with reasonable computational
demands, and the need to adapt to an ever-changing
environment, while trying to minimise the need for
human intervention. Each of these issues corres-
ponds to a challenge that the control strategy has to
overcome:

1. The presence of a unmeasurable stochastic dis-
turbance, i.e. fex, influences the complexity of the
power absorption process and, consequently, the
optimal control action that has to be computed
(Merigaud & Ringwood 2018). This means that
the wave contribution is crucial in every object-
ive function that considers either energy, or
power absorbed over a certain time, and that the
control should be able to incorporate such infor-
mation accordingly.

2. As mentioned in Section 2.1, modelling uncer-
tainty needs to be managed in order to avoid pos-
sible potential controller misbehaviour that could
lead to structural damage and/or suboptimal
performance.

3. The control should respect any constraints that
characterize the motion and velocity of the
device, together with maximum control force
available. Any damage would be difficult to
repair in a prompt manner, and maintenance in
offshore environments carries high expenses.

These strongly linked problems can be addressed
differently depending on whether the control strategy
chosen is model-based or data-driven. Model-based
controls could be defined as control systems that
base their synthesis on the knowledge of the plant to
be controlled, based on a previously built model,
which is fixed in time. This model can be obtained
by means of first principle modeling or through
system identification procedures (Schoukens &
Ljung 2019). In contrast, we define data-driven con-
trol strategies as all those controllers which involve
an online data flow that ultimately influences the
control synthesis procedure (Hou & Wang 2013).

These two approaches lead to different strategies,
each one with its advantage and drawbacks. In fact,
the presence of a model can affect different aspects.
In particular, through the knowledge of a model, it is
possible, for example, to estimate the (unmeasurable)
force fex acting on the WEC (Peña-Sanchez et al.
2020). As a consequence, in the optimization phase,
the disturbance can be treated as known at every
instant, and can be eventually forecasted over time
through predictors (Peña-Sanchez et al. 2020).
Having a model available during the synthesis phase
of control also enables the propagation of the dynam-
ics of the system into the future, thus enabling any
constraints on system states and/or outputs (such as
position or velocity) to be directly considered within
the control computation. However, model-based strat-
egies need to handle the inherent uncertainties
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(parametric or given by unmodelled dynamics) aris-
ing from an approximate model of the system. In
contrast, this problem does not affect the data-driven
approach which, instead, having direct knowledge of
the system from online data flow, can compute con-
trol actions based on the ‘status’ of the real system,
or even adapting accordingly over time. Moreover, to
have a higher fidelity, the model that model-based
controls would require can compromise real-time
feasibility and, consequently, deployability. These
latter issues, typical of optimization-based systems
with a model-based approach, generate a strong inter-
est in exploring different data-driven solutions.

3.1 Different types of data-driven
optimization-based control systems

The optimization-based data-driven control strat-
egies applied in the wave energy field can be classi-
fied into two main classes: learning-based and
adaptive strategies. As it is possible to notice from
Figure 2, these approaches have two different work-
ing principles. In particular, the former relies on
a learning process to calculate the optimal action to
be applied. Online data flow impacts this process by
directly changing the logic by which the control is
computed, and the optimization process evolves.
Adaptive strategies, on the other hand, exploit this
flow of information to act on the knowledge they
have of the system (a model), and modify the control
synthesis process accordingly.

3.1.1 Learning-based strategies
Several state-of-the-art learning strategies have been
considered to solve the WEC control problem. Among
them, one main distinction can be made between algo-
rithms that can be compared to surrogate optimization
processes (Forrester & Keane 2009) applied to the
optimal control problem, and those that fall into the
category of reinforcement learning (Sutton & Barto
2018). All learning-based strategies are characterized
by the need to balance the double goals of exploration
and exploitation within their actions. In fact, these
controls must be able to explore the space of actions
to acquire enough information constituting their
learned knowledge of the system, while, at the same
time, maximizing energy absorption. For this reason,
and in contrast to model-based control, these strategies
must accommodate in some way a learning strategy
within the control calculation phase, in order to bal-
ance these two ‘conflicting’ requirements. Moreover,
another common characteristic, as it is possible to
observe from Figure 2, is that they do not make use of
wave estimation or any model of the system to solve
the optimization problem.

Solutions belonging to the surrogate optimization-
like category make use of a structure, often called
a metamodel, to store the information obtained
during the learning process. This structure is updated
online and directly describes the map that associates
the inputs (control actions and disturbance) of the
system, with an estimate of the value that the func-
tion to be optimized takes under those conditions.

Figure 2. Optimization-based control working principles: the differences between model-based and data-driven
approaches.
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Among these strategies, a further distinction can be
made with respect to the type of structure used to
generate the metamodel. Neural networks (NN) have
been used in (Anderlini et al. 2017a, Pasta et al.
2020) to formulate the relationship between the
parameters describing the so-called reactive control
(damping and stiffness feedback structure), and the
significant height and energy period of the wave,
with the measure of the function to be optimized. In
(Pasta et al. 2020), the output is the absorbed aver-
age power over a certain time with the applied
damping and stiffness, and in the measured sea con-
dition. In (Anderlini et al. 2017a), an additional
output is present to describe the maximum displace-
ment, measured in the same time window corres-
ponding with power averaging, to also consider, in
the optimization process, constraint information.
Also, (Pasta et al. 2021) adopts a NN to describe the
metamodel, but the average power is connected, in
this case, to the passive control parameter (damp-
ing), and those parameters characterising the corres-
ponding sea-state (significant height and energy
period). In all these three studies, the learning strat-
egy is formulated purely as an initial exploratory
phase (random values of damping and stiffness
inside a certain bounded set), followed by a second
stage in which the probability of additional explor-
ation is inversely proportional to the amount of
experience already gained. A second approach to the
formulation of the metamodel is given by Gaussian
Process Regression. The main advantage of this
approach is that, since the Gaussian process is
a probabilistic model, it is able to provide estimates
of the uncertainty bounds with respect to the object-
ive function that is modeling. This information is
particularly valuable, providing the possibility of
handling the balance between exploration and
exploitation as an optimization process of a function
called an acquisition function. The acquisition func-
tion weights the value given by exploration of areas
with less knowledge (and highest uncertainty), with
the benefit of adopting a control action that can
potentially maximize the reward (areas close to the
current best observation). In this way, through the
optimization process itself, the control actions are
exploration-oriented whenever the knowledge is
insufficient, while, whenever the uncertainty of the
metamodel reduces, these become exploitation-
oriented instead. This approach is inspired by expen-
sive function optimization algorithms, in which only
a few attempts to observe the function to be opti-
mized are available. This strategy is used in (Shi
et al. 2019, Gioia et al. 2022) to converge to the opti-
mal damping and stiffness of a reactive controller.
The function to be optimized in (Shi et al. 2019)is
the performance function of the WEC control com-
petition (Ringwood et al. 2019), computed over
a time window of 20 wave periods. This function
rewards absorbed power, and penalizes large
motions and PTO forces. In (Gioia et al. 2022), the
function to be optimized represents average power,

although the optimization process also exploits data
provided by approximate model simulations of the
WEC to accelerate convergence, in a co-kriging
fashion (Forrester et al. 2007).

The second category is that constituted of
reinforcement learning (RL) control systems (Sutton
and Barto 2018). These algorithms belong to the
class of unsupervised learning strategies, and base
their convergence to the optimal control on the con-
cept of learning through punishments and rewards,
depending on the applied control actions and conse-
quently observed results. In particular, in RL, an
agent, in a certain state s (which describes the agent
and the surrounding environment conditions),
applies an action a, interacting with the environment
and moving towards a new state s’. The consequence
of action a is the reward r, which depends on the
function that the optimal control wants to optimize.
The selection process for a is modeled as a Markov
decision process. This process is based on the so-
called value function, which is an estimated value of
the total future reward, with the aim to balance
exploration and exploitation. The outcome of this
strategy over time is the policy, i.e. the optimal
behaviour the control is expected to learn. Several
attempts have been made to adopt RL strategies to
solve the WEC control problem. A first attempt to
tune, online, a passive control law has been carried
out in (Anderlini et al. 2016), adopting a Q-learning
strategy. In (Anderlini et al. 2016), Monte-Carlo
methods are applied to the formulation of the
Q-learning strategy to deal with the variability that
characterises irregular wave conditions, and to
derive a declutching control strategy. In (Anderlini
et al.2017c), the authors compared a least-squares
policy iteration (LSPI) with Q-learning and SARSA
(state-action-reward-state-action) approaches, to
tune a passive controller aimed at maximizing aver-
age absorbed power. The same LSPI strategy is
implemented, with some constraints considerations,
in (Anderlini et al. 2017b) with the addition of
a reactive (stiffness) term. Q-learning strategies are
applied both in (Anderlini et al. 2018) and (Bruzzone
et al. 2020) to obtain the optimal damping and stiff-
ness of a reactive controller applied to point absorb-
ers WEC systems. A deep Q-learning approach (that
employs a deep neural network to describe the agent
behaviour) is presented in (Umeda & Fujiwara 2020)
and (Zou et al. 2022). Actor-critic versions of
Q-learning have been employed in (Zadeh et al.
2020) and (Ghorban Zadeh et al. 2022). In particular,
actor and critic are modeled as a NN in (Zadeh et al.
2020), and in a Bayesian fashion by means of GPR
in (Ghorban Zadeh et al. 2022). It must be high-
lighted that the latter is the only attempt among these
strategies to directly control the PTO force, and not
a parametrization of a previously defined
control law. However, at the same time, it must be
pointed out that the excitation forces are assumed to
be known in the process. (Ghorban Zadeh et al.
2022) also compares the results with an optimal
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model-based control (an MPC), showing the possible
improvements obtained with respect to NN-based
actor-critic Q-learning.

3.1.2 Adaptive strategies
The optimization-based adaptive strategy class com-
prises WEC control systems in which the online data
flow affects the control synthesis by actively chan-
ging the adopted model of the plant, adjusting the
structure over time to resemble the actual WEC pro-
cess. As it can be seen from Figure 2 the presence of
a model (even eventually from the initial stage, if an
approximate model is assumed available) allows the
use of wave estimators to provide estimates in time
of the wave contribution. The interesting characteris-
tic of this class is that, since a model is considered
inside the optimization process that characterize the
control synthesis, the adoption of well-established
model-based techniques is thus enabled.

Since an online estimate of the wave disturbance
can be considered available, this class of controls is
mainly constituted by predictive control strategies.
In particular, adaptive pseudo-spectral control is con-
sidered in (Davidson et al. 2017, Davidson et al.
2018). In these studies, leveraging a fixed model
structure previously built through Jacobian lineariza-
tion, the adaptive strategy controls the system while,
at the same time, changing (online) the parameters
of the model on the basis of data collected from the
real system (emulated in this case by a high-fidelity
numerical wave tank environment). In constrast,
(Zhan et al. 2018) consider an adaptive parameter
estimation algorithm to modify (online) the values of
the radiation and excitation parameters, defined
within a simplified model structure. The adapting
model is employed within a linear noncausal optimal
control strategy, able to synthesize the energy-
maximizing control force. A similar adaptive
approach is coupled with MPC in (Zhan et al. 2020).
In this study, the authors adopted a parameter esti-
mation mechanism to identify and update (online)
the frequency-dependent dynamics terms of the
model, allowing the MPC to suitably adapt to
changes in either the system, or in the wave
conditions.

It is important to note that, the control synthesis
procedure is not the only valuable ‘output’; These
strategies are, in fact, able to provide a model of the
system adapted using real online data, enabling also
possible offline use for simulations with an improved
fidelity.

3.2 The problem of wave contribution

One of the main differences between learning-based
and adaptive strategies is given by the way in which
they treat the disturbance, and minimise/effectively
eliminate the variability introduced by wave effects.
As mentioned in Section 3.1.1, learning strategies,
not having an available wave force estimation pro-
cess, usually consider statistical synthetic

information of the wave signal (e.g energetic period
and significant height), and base their objective func-
tion on an averaged measure of the power over
longer time windows, reducing the variability given
by the stochastic component of the wave in the
absorption performance (Merigaud & Ringwood
2018). In contrast, adaptive methods suppose the
presence of a simplified version of the system
model. This facilitates wave estimation and the
chance of explicitly considering the wave contribu-
tion in the power absorption, making the optimiza-
tion problem to be solved deterministic. The
possibility of wave estimation and forecasting allows
the control synthesis to be based on shorter time
windows, and a predictive approach to be adopted.

3.3 What function does optimization fulfill?

Another comparison between the different strategies
can be made regarding the goal of the optimization
process inside the control loop. In adaptive strat-
egies, optimization provides the control action to be
applied, i.e. giving, as an output, the actual control
force able to solve the energy-maximizing problem.
In learning strategies, instead, the output optimized
by the controller is the parametrization of a fixed
control law (usually a reactive or passive one).
Moreover, having to deal with the presence of
a learning strategy, another internal distinction can
be made. Apart from the NN-based surrogate opti-
mization-like algorithms, which treat the learning
strategy in a separated fashion, all the other learning
algorithms (GPR-based optimization-like and
reinforcement learning) enclose the management of
the learning strategy within the optimization process
(and objective function). The resulting optimization
goal includes, in this way, both energy maximiza-
tion, and best learning.

3.4 On the problem of constraint handling

A final consideration can be formulated in terms of
the capability of the analyzed control strategies to
deal with different type of constraints. The relation
that occurs between the choice of the strategy and the
constraint handling mechanism is deeply influenced
by model availability, and the way in which the con-
trol action is optimized (e.g. a predictive wave-by-
wave approach, or an average approach purely based
on past measured data). The presence of a model and
the capability to ensure constraints are also mutually
linked, since the latter is a consequence of the
former. The presence of a model in adaptive control-
lers allows wave estimation (and consequently wave
prediction through forecast methods), and the propa-
gation of device dynamics into the future. This fea-
ture ensures the possibility of potentially considering
both input and output (displacement and velocity)
constraints in a specific (i.e. hard constraint) manner.
In contrast, learning-based controllers, basing their
entire knowledge of the conversion process on past
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average data, and not having any explicit prediction
mechanism, are not capable of computing control
actions that are able to guarantee hard constraint
handling. Nevertheless, some attempts to include the
constraint handling mechanism in the control design
can be found within this class of controllers. For
example, in (Anderlini et al. 2016, Anderlini et al.
2017c, Anderlini et al. 2018), the authors designed
the reward function (to be maximized) in such a way
that whenever the output constraints are not met, the
obtained reward assumes a negative value. In this
way, if the initial learning stage is performed in
a simulated environment, once the controller is
deployed on the real system it attempts to avoid any
situation that can potentially cross the defined bound-
aries. In (Anderlini et al. 2017b), the reward function
is also shaped to guide the system outside any situ-
ation of potential risk, but, in this case, by penalizing
the reward value of a term that is inversely propor-
tional to the distance of the maximum output in the
evaluation, and the defined constraint value.
A similar mechanism is adopted in (Shi et al. 2019),
due to the fact that the objective function (assumed
equal to the performance function of the WEC con-
trol competition (Ringwood et al. 2019)) already pen-
alizes excessive velocities and displacements. Also,
in (Ghorban Zadeh et al. 2022), the reward function
penalizes the positive reward, given by high power
absorption, in proportion to the constraint violation,
whenever its maximum value is violated. Howver, in
this works, the resulting control action could be very
conservative, since controller parameters (e.g. damp-
ing and stiffness in reactive control) are reduced,
making this approach an attempt to copy the con-
straint mechanism. Constraints are considered in
(Zou et al. 2022) by means of a safety mechanism
which, once the variable to be constrained crosses
a certain safety value, make the RL-based controller
switch to a controller designed to rapidly reduce the
variable amplitude. Finally, in (Anderlini et al.
2017a), since the NN metamodel has a double
output, constituted by average power and WEC max-
imum displacement, the optimization process is for-
mulated to maximize the first output, while
constraining the second. It is evident, however, that
in explorative situations in which the control action
(stiffness and damping parameters of the PTO react-
ive controller) is taken randomly, no attempt at con-
straint handling is present.

4 CONCLUSIONS

In this paper, we analyze the different data-driven opti-
mization-based control solutions applied within the
wave energy field. Two main classes of control,
namely learning-based and adaptive WEC controllers,
are identified, highlighting their own benefits and
drawbacks. Within the current state-of-the-art, adaptive
solutions offer a good trade-off between the intrinsic
advantages offered by model-based control techniques

(wave force estimation availability, hard constraint
handling), while learning-based controllers have yet to
overcome some of the problems that arise when any
model is present within the optimization process. How-
ever, the opportunity to derive a control computation
purely based on data is still very appealing for further
research, mainly since it does not limit the internal
system description to a model structure that has to be
previously defined. This latter feature could be of cru-
cial importance in real-world scenarios, where com-
plex dynamical behaviour is present, which can be
potentially missed by simplified control-oriented
models, resulting in suboptimal energy-maximizing
performance.
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