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Abstract: Optimal control of wave energy converters has been shown to require an injection of
power into the WEC system to maintain an optimal velocity profile. While this consumption of
power results in an overall increase in energy capture, it also brings more stringent requirements
on the power take-off (PTO) system. Specifically, the PTO must cater for bi-directional power
flow and a source available for the provision of this reactive power, either via a storage device,
or the electrical grid itself. However, one aspect which has received relatively little attention is
the magnitude of the reactive power peaks, which may have implications for the required overall
power rating of the system. In particular, though reactive power flow may only be required for a
small fraction of the wave period, reactive power peaks well in excess of active power levels bring
a potentially significant capital cost in terms of system power rating, along with a unfavourable
capacity factor rating. This paper examines the circumstances under which reactive power flow
peaks exceed active power levels and proposes a solution which puts a finite (nonzero) limit on
reactive power flow, consistent with active power levels. The problem is solved as a nonlinear
constrained optimisation problem, while the consequences of imposing such a limit on energy

capture are also examined.
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1. INTRODUCTION

The importance of energy-maximising control to the eco-
nomic performance of wave-energy converters (WECs) has
been well articulated (e.g. (Chang et al., 2018)). The
control challenge is to fully utilise the operational envelope
of the WEC, while respecting the physical constraints on
the system. Usually, the constraints considered focus on
the physical tolerances of displacement (especially regard-
ing end-stops on linear generators), power take-off (PTO)
force constraints, and there may be additional limitations
on PTO/WEC velocity. In general, choice of the power rat-
ing on the PTO is a complex calculation, which considers
the capital cost of the generator/PTO system, along with
the likely capacity factor attained at a particular wave
site evaluated by using a scatter plot of the statistical
occurrence of various sea states. Ultimately, a power limit
is also set by the product of force and velocity constraints
(if present).

A wide variety of control philosophies have been pro-
posed for wave energy converters (Ringwood et al., 2014),
many of which (Faedo et al., 2017) can respect the hard
constraints on displacement, force and (where present)
velocity. These (force, velocity, displacement) present as
linear constraints and, while somewhat complicating the
calculation of the optimal control, can still result in a
convex optimisation problem.
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WEC controllers can be broadly divided into those that
can inject power into the WEC system (from the grid,
or some storage device), termed reactive controllers, or
those that have no facility to inject power, termed passive
controllers. Reactive controllers have significantly more
potential to harness energy, but have extra capital costs
associated to facilitate four quadrant (velocity/force) op-
eration. Since reactive power is only employed for a small
part of the wave (or pseudo wave, in panchromatic seas)
cycle, it is tempting to ignore the specific requirements
of reactive power flow, assuming that they are covered by
forward power capacity specifications and design consid-
erations, mentioned above. However, a number of studies
(e.g. (Shek et al., 2008)) have shown that reactive power
peaks can significantly exceed those for active power, with
consequent implications for the power rating of the PTO
system.

This paper examines the conditions under which signifi-
cant reactive power peaks occur, under reactive control,
and provides a solution in the form of a finite (non-zero)
limit on reactive power. Specifically, there is a strong
case to be made to reduce reactive power peaks to a
level anticipated from forward (active) power flow, and
ultimately being part of the power design specification of
the WEC/PTO system, as articulated previously. How-
ever, the consequences of any reductions in reactive power
limits on overall WEC energy capture need to be carefully
examined, in order to fully assess the economic trade-off
between power capacity specification (capital cost) and
energy capture.

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.10.465



428 Jitendra K. Jain et al. / IFAC PapersOnLine 55-31 (2022) 427432

The remainder of the paper is laid out as follows: Sec-
tion 2 describes the WEC system studied, its mathemat-
ical model, and the formulation of the optimal control
problem; Section 3 recalls relevant details on the Fourier
pseudospectral method; Section 4 outlines the numerical
approach to solving the control problem; Section 5 ex-
amines conditions under which reactive power flow can
become significant; Section 6 provides a brief discussion of
the impact of imposing a constraint on reactive power on
the system’s performance; finally, Section 7 presents the
conclusions of the study.

2. WEC SYSTEM AND MATHEMATICAL MODEL
2.1 WEC system description

For the purposes of this study, a heaving point absorber
(HPA) is adopted, as shown in Fig.1. In particular, the
value of reactive control is especially relevant with resonat-
ing WEC devices, explaining the choice of particular WEC
type. For simplicity, we assume that the device moves in
heave only, limiting the analysis, and subsequent control
design, to one degree of freedom (DoF). The PTO system
exerts a force fpro(t), possibly using a linear generator
(but not limited to such a PTO) which can be either
positive or negative with respect to the sign of the WEC
velocity ().

The parameters of the HPA are taken from (Bacelli and
Ringwood, 2014) corresponding to a vertical cylinder of
radius 7 = 4 m and draught d = 10 m.
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Fig. 1. Heaving point absorber.

2.2 WEC mathematical model

Using Cummins’ equation (Cummins (1962)), a heaving
point absorber model is given as

(mp + moo) 7(t) + b%(t) + /0 k(t — m)y(T)dr + sy(t) =

oto(t) + [fe(t)

(1)
where my, is the generalized mass, m, is the added mass
at infinite frequency, v(t) € R is the WEC displacement,
b is a linear damping term corresponding to viscous drag,
s is the stiffness constant, k(¢) is a continuous function

in [0, @), a < oo; the convolution term j;)t k(t — m)y(r)dr
is a radiation force, fpro(t) and f.(t) are the PTO force
and excitation force, respectively. f.(t) is assumed to be
continuous.

2.8 Control objective and formulation

The objective function over the time interval [0,T] for the
WEC optimal control problem is given by

J=- / 5(0) fyro (). (2)

The optimal control problem seeks to maximise the total
absorbed energy J over [0,7]. In this work, a reactive
loading based control technique is considered. As the wave
frequency varies above or below the resonance frequency of
(2), the PTO force absorbs power. Such power is utilized
to resonate (2) with the incident waves. The absorbed
power by the PTO device (a electrical generator), can
lead to large negative peaks in the output power, referred
to as reactive power. For several wave conditions, the
magnitude of the negative power peaks may increase above
the forward power peaks. In order to handle this, the PTO
ratings may need to be very high, adding additional costs.
With this in mind, it is natural to consider introducing
a reactive power constraint, such as the following, in the
problem formulation.

Y(t) fpro(t) < PR (3)
where PR** € [0, 0).
Practical systems modelled by (1) will have physical lim-

itations on the values of 7(t), and fpro(t). These are
defined as follows.

|’y(t)‘ < Imax ‘fPTO(t)‘ < fmaz (4)

Now, the optimal control problem is to maximise J in (2)
by designing an appropriate f,io(t) subject to (1), (3), and
(4).

To write the problem in state-space form, define z;(t) =
v(t), z2(t) = 4(t), and u(t) = fpto(t). Then, the model
becomes

l"l = X9
t
mio = —bxy — / k(t —1)xa(r)dr — sx1 +u+ fe (5)
0

where m = mp + Moo

From (2), the objective function is

T
J = —/ xoudt, (6)
0

and the constraints are rewritten as

ToU S P}gwwa |£L’1| S Imax, |'LL| S fmaaz (7)

3. FOURIER PSEUDOSPECTRAL METHOD

The constrained optimal control problem described in
the previous section can be solved numerically using a
Fourier pseudospectral method following the framework
presented in Bacelli and Ringwood (2015). The functions
describing the state variables z1, x5 and control input u
are approximated by zero mean truncated Fourier series;
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the excitation force f. is also assumed to be zero-mean.
The dynamics, objective function, and constraints are
then expressed in terms of the coefficients of the Fourier
expansions, leading to a finite dimensional optimisation
problem. In this section, the construction of a finite
dimensional approximation of the state variables solving
the dynamical equations (5) is outlined. The objective
function, constraints, and solution of the optimal control
problem are addressed in the next section.

In terms of the standard Fourier basis functions, the state
and control approximations are given by:

N/2

Zxﬂcos TWot) + a7, sin(rwet) = W(t);

" /2 (8)
u(t) ~ Z uscos(rwet) + upsin(rwet) = U(t)a
r=1

where j = 1,2, w, = 2% is the fundamental frequency, and

T
"I}NQCN]
27y

T
..,ucﬂ,usﬂ}
2 2

0101 = st i sos ()i (Yoot

The orthogonality of the Fourier basis functions with
respect to the standard inner product in L2([0,7]) can
be used to show that

/T T (1)U (t)dt = %IN
0

where Iy is the identity matrix of size N.

(9)

Using this, the energy is approximated by

T
T
JN = f/ AT OT (4) W (t)dodt = 7511%2 (10)
0
The derivatives of x;, j = 1,2 can be written as
i =W(t)i; = U(t)Dyi; (11)

where Dy € RV*¥ is a block diagonal matrix, given by

[0 w, 0 -+ 0 0
~we 00 -+ 0 0
0 0
Dy = (12)
.00
0 0--0 0 N
[0 00 <N g |

Using (11), the following approximation of the dynamics
(5) is obtained.

U(t) Dy =V (t)Ts
m‘l’(t)quig — b\I/ )[EQ — Sg’( )
/ k(t — @)U (t)iada (13)
)i+ fe

Equating coefficients in the first state equation in (13)
yields

Dyiy = iy (14)

429
Since Dy is invertible,
i1 = Dg'dg (15)
where
[0 _w% 0 - 0 0 7
= 0 0.0 0
D‘£1= 0 0
0 0
0 0 0 0 —x%
L0 0 -0 szo 0 |

The residual form of the second equation in (13) is given
by

wy =mUDyiy + bViy + sULy

t
+ / k(t — @)¥(t)Zoda — Uh — fe, (16)
and the residual error is thus minimised by solving
(U w)) =0 (17)

where 0 € RV,

Taking the inner product of U7 with each term in (16)
separately yields

T
(U mUDyds) =mIDyis = §mINDq,i“2,
T . .
<\I/ b\IJ$2> :*bINl'Q,
2
(0T, sWiy) 581Ni1, (18)
(U7, i) =5 Int,
T
<\IIT7 fe> ZEINév
where é is the vector of Fourier coefficients of f..
Substituting (15) into (18) shows that
T
(U7, sWiy) = isINDglfg (19)

Representing the convolution integral in terms of the
coeflicient vectors requires additional manipulation and we
do not include the details here due to space constraints.
A full description of how to include this term can be
found in Bacelli and Ringwood (2015). The key point is
that combining (17) with the expressions obtained for
the separate inner products in the residual leads to the
following equation for 5.

Hiy=1+¢ (20)
Here H is a block-diagonal matrix, of the form
i b1 mq 0 --- 0 0 7
—my bl 0 --- 0 0
g=] % 0 (21)
: : . 0 0
0 0 --- 0 bN/Q mN/2
0 0 0 —mN/2 bN/2 ]

where the diagonal elements in H, b, 1 <7 < N/2 are all
positive.



430 Jitendra K. Jain et al. / IFAC PapersOnLine 55-31 (2022) 427432

As the matrix H is clearly invertible as the determinant
of each block on the diagonal is b2 +m2 > 0, we have that

By =H 'a+ H e (22)
Combining this with (15) gives the approximate solution

for the states x1, z2. In the next section, the solution of
the optimal control problem, based on these, is described.

4. CONTROL SOLUTION

To solve the optimal control problem using the Fourier
pseudospectral method, it is necessary to express the
objective function J and the other constraints in terms
of the coefficient vectors i, Z1, To.

First, using equation (6) the objective function for the
finite dimensional approximation is given by

r T
J = —/ 0T UT Wiydt = —511%:«2 (23)
0
Using (22), this can be written as
T T
J = —aaTH—la — 5aTH—lé (24)

Unconstrained Case
As all the diagonal elements in (21) are positive. It follows

that the matrix H + H” is positive definite so the total
absorbed energy in (24) is concave, and the optimal control
u*, which maximises (24) in the absence of constraints is

it =(H'+H ") H e (25)

Handling Constraints
To obtain a finite dimensional approximation of the

constrained optimal control problem, it is necessary to
express the constraints in (7) in terms of the Fourier
coeflicients.

The constraint on the control input becomes

(W (t)a| < fmaa- (26)
Using the expressions (22) and (15), we can write the
constraint on 1 (¢) as

(U(H)Dg H™ (4 + €)| < gmaz- (27)
The constraint xou < PR'* is approximated by
AT ()T (t)iy < PR (28)

After substituting (22) into (28), we have
"V H Yo+ aT v )T H e < PRer. (29)
The constraints in (26), (27), (29) are all point-wise con-
straints on truncated Fourier series. Due to the difficulty
of determining extrema for such series, the constraints are
enforced at a finite set of points {tk}]kvéo in [0, 7). Writing
Uy, for U(ty), we end up with N, + 1 constraints
WP T H 0+ oT VT o H e — PRer <0, (30)
The above discussion shows how to transcribe the origi-
nal optimal control problem to a finite dimensional, con-
strained, nonlinear optimisation problem defined by the
objective function (24) and the constraints (26), (27), (30).
In the results described in the following sections, the finite
dimensional problem was solved using the primal-dual
interior point algorithm implementation in the CasADi
toolbox for Matlab (Andersson et al., 2019).

5. REACTIVE POWER FLOW ANALYSIS

In this section, we examine the conditions under which
reactive power flow becomes significant, with particular
focus on the predominant wave period relative to the
device resonant period; in general, significant amounts
of reactive power are required when the device resonant
period is greater (i.e. the device is slower) than the
predominant wave period. In contrast, slowing a device
with fast dynamics to a longer wave period can be achieved
with increased PTO loading.

We also examine the impact of physical system constraints
on the use of reactive power and the (linearised) viscous
drag term is also varied to analyse the effect of dynamic
drag on reactive power flow.

We employ a Jonswap spectrum (Hasselmann et al., 1973),
with an example spectrum shown in Fig.2. The employ-
ment of a JONSWAP spectrum gives the option to exper-
iment with the spectral bandwidth of the sea spectrum,
via the JONSWAP peak enhancement factor, ;.

For a HPA WEC, such as that shown in Fig.1, the
most significant constraints on the system are force and
displacement, both directly related to the PTO physical
constraints. Figs.3-5. Clearly, the impact on the ratio of
reactive to forward power (P./Py) is minimal, while the
force constraint has a significant impact, up to a certain
point (around 2 x 10% N, though somewhat dependent on
the peak wave period, T,). The dominance of the force
constraint is probably to be expected, since force forms
one of the component factors of power (the other being
velocity).

Fig.6 shows the P,/P; ratio for the unconstrained case,
for various values of T, and the (linearised) viscous drag
coefficient b. We can note that, for some combinations of
T, and b, the P,/Py ratio can significantly exceed unity,
indicating that the peaks in reactive power flow are greater
than those for active (forward) power flow.
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Fig. 2. Jonswap wave spectrum employed, with T}, = 2sec,
peak enhancement factor, v;=1.5, and significant
wave height Hy=2 m.

6. IMPACT OF REACTIVE POWER LIMIT

Initially, we examine a particular evolution of the system
power flow, for conditions corresponding to no reactive
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Power Peaks Ratio Variation at Tp=2 sec
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Fig. 3. Power peak ratio variation with displacement and
PTO force constraints at T, = 2sec.

Power Peaks Ratio Variation at Tp=7 sec
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Fig. 4. Power peak ratio variation with displacement and
PTO force constraints at T}, = 7sec.

Power Peaks Ratio variation at Tp=14 sec
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Fig. 5. Power peak ratio variation with displacement and
PTO force constraints at T}, = 14sec.

power flow constraint, and then applying a constraint on
P, of 1 x 10° W, shown in Fig.7. The other parameters
for this simulation are T}, = 9 sec, significant wave height
H, = 2m, peak enhancement factor, v;=1.5, damping,
b=10 N.sec/m, displacement constraint =2.5 m and veloc-
ity constraint =2.5 m/sec. Total energy obtained (over the
simulation duration) without applying the reactive power
constraint is 1.7896e+07 J, with 1.3397e+07 J converted

Power Peaks Ratio Variation

«104 5 10
5

0Wave peak period Tp (sec)

Damping b (N.sec/m)
Fig. 6. Power peak ratio variation with damping b and
peak period T},.

following application of the constraint. Note that the limit
on P, (of 1 x 10°) is strictly observed.
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Fig. 7. Power variation with time: without reactive power
constraint (solid line, blue color) and with reactive
power constraint (solid line, red colour).
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Fig. 8. Energy capture increase with progressive relaxation
of reactive power constraint.

Fig.8 demonstrates the incremental impact of a reactive
power constraint on overall energy capture. While the
energy capture for larger values of Pp'** were difficult to
achieve, due to convergence issues, the generally asymp-
totic behaviour of Fig.8 suggests that there is a diminish-
ing return on providing increasing values of PTO power ca-
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pacity to facilitate reactive power peaks, especially where
these peaks may be in excess of the active/forward power
peaks.

7. CONCLUSION

This preliminary study, to the best of the authors’ knowl-
edge, is unique in examining the conditions under which
reactive power peaks occur, and provides a technical mech-
anism to provide an optimal PTO control with a strict
limit on reactive power levels (i.e. optimal constrained
control). An alternative practical solution would be to
calculate the optimal control and then try to limit reactive
power flow, via saturation characteristics applied to the
velocity and force signals. However, since velocity is a
system variable, imposing any velocity limit would require
some advance consideration of the system dynamics.

A further possibility is to use an optimal constrained con-
trol solution which considers the combination of velocity
and force constraints to limit excessive peaks in reactive
power. One advantage of this is that both force and ve-
locity constraints are linear, while any power constraint is
nonlinear, with consequent convergence problems for the
control calculation. However, while aligning the product of
force and velocity constraints with the power constraints
guarantees the power constraint, it may hinder the indi-
vidual freedom of either velocity or force in providing a
truly optimal control while remaining within the power
constraint. Nevertheless, the use of individual force and
velocity constraints to provide an overall power constraint
will be investigated as an area for future work, since the
relative ease with which the linearly constrained optimal
control solution is achieved may trump any theoretically
optimal (nonlinearly) power constrained solution which
may be not always be achievable.

The preliminary results reported in this paper do, how-
ever, demonstrate the possibility to limit reactive power
in an optimal way, especially so that the reactive power
peaks do not determine the required power capacity of the
PTO system. Given the (projected) asymptotic nature of
Fig.8, a reduction in the allowable reactive power level
to the typical (rated) active/forward system power seems
sensible, and the marginal loss in captured energy is likely
to be more than compensated for in the reduced capital
cost of the PTO system. The paper also examines the
conditions under which reactive power peaks can exceed
active/forward power peaks, dependent on the relative
positioning of peak wave period and device resonant pe-
riod, as well as the level of viscous damping. The effect of
the viscous damping parameter is interesting, since the
value of b may be indicative of the WEC device type,
as well as more subtle variations, due to the particular
WEC model, with a type classification. For example, for
large b values, Fig.6 shows that the P,/P; ratio tends
towards unity, with no excess of reactive power peak over
the active/forward limits, obviating the need for a specific
reactive power flow limit. This suggests that resonating
WECs (e.g. HPAs) may have more need for a specific
reactive power flow limit than, say, oscillating wave surge
converters (OWSCs), which have typically higher viscous
drag coefficients.

Finally, it is envisaged that the control solution presented
here would be implemented in a receding-horizon fashion,
such as in (Genest and Ringwood, 2016). For a full-scale
WEC, the sampling interval would be of the order of ~
0.1-1 s, which is likely achievable with an embedded im-
plementation of the proposed algorithm. Over the control
horizon, an estimate and forecast of the wave excitation
force is needed (perfect knowledge of this is assumed in the
current analysis, for simplicity), which could be provided
by a range of methods, such as those reported in (Pena-
Sanchez et al., 2019) and (Pena-Sanchez et al., 2018).
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