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A control design framework for wave energy
devices

Nicolás Faedo and John V. Ringwood

Abstract—This paper presents an integrated framework
for the design of wave energy control systems, considering
the totality of the design process as well as any ancillary
functions required, such as model reduction, excitation force
estimation, etc. In particular, we propose the moment-based
mathematical framework as an integrated environment
which allows a smooth transition between modelling and
control activities, as well as providing a framework to
consider optimal rejection of modelling errors or errors in
excitation force estimation. The paper provides an overview
of the framework, also containing an illustrative case study
to demonstrate a likely pathway through the framework.

Index Terms—Wave energy, Model reduction, Optimal
control, Moments, Moment-matching

I. INTRODUCTION

THE development of cost-competitive wave energy
converter (WEC) technology is a challenging task.

A key component in enhancing the technical and
economic performance of a wave energy converter is an
energy-maximising control system [1], which aims to utilise
the capital infrastructure to the maximum economic
advantage, while considering physical constraints and
any impact of the control actions on the operational
costs of the system. Somewhat similar to the diversity
of wave energy devices themselves, a wide variety of
control systems for wave energy devices also exists,
from relatively simple structures (which try to imple-
ment some version of complex-conjugate control) [2] to
those based on on-line numerical optimisation [3], [4].
Despite the range of potential controller choices, few
consider the full WEC control process, from modelling
to controller implementation.

We present the moment-based approach as an integra-
tive framework for WEC controller design, underpinned
by the efficient representation of system variables in
terms of moments [5], [6]. Moments are connected to the
input-output characteristics of the dynamical system
under analysis, and provide a very specific parameter-
isation of the steady-state output response (provided
it exists) of such a system. Such a parameterisation
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is given in terms of a so-called signal generator (see
Section III), capable of representing a large class of
‘basis’ functions, including trigonometric polynomials
(harmonic for control purposes), directly highlighting
the inherent synergy between moments and the oscil-
lating nature of the WEC harvesting process.

While different parameterisations, other than classical
zero-order hold (e.g. [7]), and first-order hold [8], have
already been utilised in the wave energy application
[9]–[11] the proposed moment-based framework not
only provides more freedom in terms of choice of basis
functions (via an associated signal generator), but also
has useful extensions to other control-related utilities for
the wave energy application, including model reduction.
In addition, it can be shown [12] that the general
moment-based framework includes, for example, the
pseudospectral approach of [9] as a special case.

A system theoretic approach to moment-matching
was originally introduced by Astolfi [5], within the
control systems literature, for model reduction, with
a focus on maximal preservation of the steady-state
response of the original system. One of the appealing
characteristics of such a moment-based framework for
model reduction is the degree to which it can handle
both linear and nonlinear system models. Inspired by
the flexibility of the moment-based framework, and its
focus on steady-state responses, moment-based energy
maximising WEC controllers were developed for both
linear [13] and nonlinear [14] WEC models, repre-
senting the first moment-based controller algorithms,
irrespective of application area or control objective1.
In addition, model reduction techniques, with specific
focus on wave energy system requirements, have been
developed, dealing with finite-order approximations
to non-parametric hydrodynamic data (typically from
Boundary Element Method (BEM) codes) [15]–[18] and
more general nonlinear input/output descriptions [12],
[19]. At the very least, these model reduction techniques
establish a seamless link between hydrodynamic (and
PTO) modelling and WEC controller design. Other
aspects to the moment-based framework include ex-
tensions to deal with uncertainty (robust control) [20],
[21] and arrays of WECs [22], [23], as well as receding-
horizon implementations [24].

The paper is organised as follows: Section II gives
an overview of the framework an its components and
documents any aspects which remain to be completed,
or where recourse must be made to aspects not covered
by the framework e.g. hydrodynamic or PTO modelling.

1Typically, in feedback control systems, the control objective is to
minimise a tracking error, rather than energy maximisation.
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In Section III, the mathematical basis for moment-
based representations is outlined, along with various
characteristics/standing assumptions of the moment-
domain. Section IV establishes the starting point for
the WEC design process (modelling) and examines
model reduction requirements with a view to energy
maximising control design. The WEC control problem
is dealt with in Section V, addressing both linear and
nonlinear designs, as well as WEC arrays. Sections
VI and VII discuss moment-based controller versions
suitable for explicitly dealing with modelling uncer-
tainty, and receding-horizon controller implementations,
respectively. Finally, following the case study of Section
VIII, conclusions are drawn in Section IX.

II. FRAMEWORK OVERVIEW

An overview of the moment-based control design
framework is given in Fig.1, where the ‘path’ followed
in this paper to achieve energy-maximising moment-
based control solutions is highlighted using green
arrows. Note that different alternative paths could be
taken, depicted in Fig. 1 using a dashed-red line. For
instance, one could use moment-based model reduction
to produce control-oriented models, which are suitable
for a large class of optimal control procedures, according
to the user’s preference/experience.

In general, the framework is relatively complete,
taking the user from the modelling stage (top of Fig. 1)
to control implementation (bottom of Fig.1). Perhaps
unsurprisingly, the moment-based framework does not
address physical hydrodynamic modelling, which is
firmly within the domain of hydrodynamic expertise,
and a variety of hydrodynamic modelling approaches
and codes are available [25], both in the realm of
boundary element methods (BEMs) [26] or computa-
tional fluid dynamics (CFD) [27] and smoothed particle
hydrodynamics (SPH) [28]. However, moment-based
techniques can be useful in data-driven modelling, as
outlined in Section IV.

Fig. 1: Complete framework for WEC control design.

Ultimately, if control design is the objective, then a
primary aim must be to get the system model into

a form suitable for the application of model-based
control/estimation design. While data-driven models
can often be parameterised to suit model-based WEC
control design needs, physics-based models (for both
hydrodynamics and power take-off (PTO) components)
rarely, if ever, do and some form of model manipulation
or reduction is necessary. Within the moment-based
framework, both linear and nonlinear model reduction
tools have been developed, honing the models into a
form suitable for control design.

On the control design side, the framework provides
for linear and nonlinear WEC control design, array
control design and robust control design, to deal with
the inevitable modelling errors. However, robust control
should not be seen as a panacea for all modelling
problems; robust controllers are generally optimally
conservative in their action, with the degree of con-
servatism related to the model uncertainty specified
at the design stage, and are therefore no substitute
for modelling excellence. Indeed, the specification of
appropriate bounds on model uncertainty is, in itself,
a nontrivial problem [29]. Within the moment-based
framework, controller implementation is handled by a
receding horizon scheme, using windowing functions
and relying on updated estimates of wave excitation.

For excitation force estimation, required as an input
to optimal non-causal WEC control schemes (see also
Section V), in both single devices and arrays, the reader
is referred to [30] and [31], respectively. The develop-
ment of moment-based estimators and forecasters is a
subject of current research, though some progress in
this direction is reported in [32].

III. MOMENT-BASED THEORY: KEY INGREDIENTS

This section briefly recalls some of the key concepts
behind moment-based theory, as developed and discussed
in, for instance, [5], [6]. In particular, we make special
emphasis on the definition of moments, using a system-
theoretic approach, and the set of ‘key ingredients’
required to formalise such a definition.

Suppose the dynamics associated with the WEC can
be described in terms of a system Σ, defined, for t ∈ ❘+,
by the set of differential equations

Σ :
{

ẋ = f(x, fe + fPTO), y = h(x), (1)

with f and h sufficiently smooth mappings defined in
the neighborhood of the origin of Σ, with f(0, 0) = 0
and h(0) = 0, and where x denotes the state-vector, fe

the wave excitation force, fPTO the PTO (control) force,
and y is the output of Σ. The first key ingredient of
moment-based theory relies upon an implicit2 descrip-
tion of the input mappings fe and fPTO: Let the so-called
signal generator G be defined as

G :
{

ξ̇ = Sξ, fe = Leξ, fPTO = LPTOξ, (2)

with ξ(t), Le, LPTO, and S defined over real-valued
spaces with appropriate dimensions. With the implicit

2Though not considered herein, an explicit description of the input
mapping is also possible, see [12].
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definition described in (2), we now consider the so-
called composite system, i.e. the interconnection of (1)
and (2), explicitly written as

G → Σ :
{

ξ̇ = Sξ, ẋ = f(x,Lξ), y = h(x), (3)

with L = Le + LPTO. The second key ingredient of
moment-based theory, within the WEC application
scenario, is closely related to the steady-state response
output mapping of the composite system (3). In par-
ticular, the definition of moments, as proposed in [5],
[6], has a strong connection with such a steady-state
response (provided it exists). From now on, and with the
objective of having a well-posed definition of moments,
we adopt the set of assumptions described in Table I.

List of assumptions adopted:

1 - System Σ is minimal, i.e. observable and accessible.
2 - The origin of ẋ = f(x, 0) is locally exponentially stable.
3 - The pair of matrices (S,L) is observable.
4 - The pair of matrices (S, ξ(0)) is reachable.
5 - The matrix S is such that its eigenvalues are simple and

with zero real part.

TABLE I: List of assumptions adopted.

Remark 1: None of the assumptions listed in Table I
imply any loss of generality with respect to the practical
application under scrutiny: Models for WEC systems
are (or can be mapped to) minimal descriptions, which
are locally exponentially stable (i.e. their linearisation
about the zero equilibrium are asymptotically stable).
Furthermore, since the implicit description (2) is user-
defined, it is rather natural to construct (2) in such
a way that all the modes of motion described by
the dynamic matrix S are excited (reachability of
(S, ξ(0))), and that the inputs generated are effectively
observable (observability of (S,L)). Finally, the last
assumption in Table I implies that the class of signals
generated by (2) are those which can be written as
linear combinations of {1, sin, cos} type-terms, which is
effectively consistent with the oscillating nature of the
wave energy harvesting process (see also Section I).

The second key ingredient of moment-based theory
now follows: Under the set of assumptions listed in
Table I, there exists [5], [6] a unique mapping π, locally
defined in a neighborhood Ξ of ξ = 0, which solves the
nonlinear invariance equation

∂π

∂ξ
Sξ = f(π(ξ),Lξ), (4)

for every ξ ∈ Ξ, and the steady-state response of the
composite system (3) is xss(t) = π(ξ(t)), for any x(0)
and ξ(0) sufficiently small. Based upon the implicit
input description (2), and the steady-state manifold
equation (4), we can now formalise the definition of
moment: The mapping h ◦ π, with π solution of the
invariance equation (4), is the moment of system (1) at
the signal generator (2).

Remark 2: Under the assumptions listed in Table I,
the moment of system (1) at the signal generator (2)
computed along a particular trajectory ξ(t) coincides
with the (well-defined) steady-state output response of
the composite system (3), i.e. yss(t) = h(π(t)).

Remark 3: In the special case where system (1) is
assumed to be fully linear, i.e.

Σ : {ẋ = Ax+B(fe + fPTO), y = Cx, (5)

the mapping π can always be written as π(ξ) = Πξ, with
Π solution of the Sylvester equation ΠS−AΠ = BL (i.e.
the invariance equation (4) for the linear system (5)), and
hence the moment at the signal generator (2) is simply
given as the matrix product CΠ, with yss(t) = CΠξ(t).

It should be clear at this point that moments provide a
very specific parameterisation of the steady-state output
response of system (1), driven by the set of inputs
generated by (2). We show, throughout this paper, that
such a parameterisation can be extremely useful within
the WEC community, being fundamental to provide
tailored solutions to two key problems: Model reduction
and energy-maximising optimal control.

IV. MODELLING AND MODEL REDUCTION

For model-based control design, it is essential that the
control objective is considered at an early stage, so that
this ultimate objective colours the design process even
at the modelling stage. This streamlines the process
from modelling through to control design, including
any model reduction steps necessary en route. One im-
portant aspect of model-based control design is the need
to have a representative hydrodynamic model which
covers the operational space of the controlled system,
as clearly illustrated in [33], [34]. Typically, for many
WEC devices, the extent of the controlled operational
space leads to nonlinear hydrodynamic behaviour, due
to increases in wetted surface and viscous drag. While a
good model of the power take-off (PTO) system is also
important, scale and operational range issues are not as
challenging as for the hydrodynamics, though physical
PTO system constraints on force, displacement, and
possibly velocity, are important to the control problem
definition (further detailed in Section V).

Moments, as defined in Section III, are key elements
for a powerful state-of-the-art model reduction frame-
work: the family of so-called moment-matching-based
model reduction. This set of techniques consists of the
interpolation of the steady-state response of the output
of the system Σ to be reduced: a reduced order model by
moment-matching Σ̃ is such that its steady-state output
response matches the steady-state output response of
the associated target system (1). Furthemore, we show
that the user has full control over the complexity
of the moment-based approximating model, even in
the nonlinear case, highlighting the versatility of this
framework to trade-off complexity vs. accuracy.

Remark 4: We consider here moment-matching-based
model reduction for structures which respond to physi-
cal laws: One starts with a defined operator (i.e. Σ in (1)),
and attempts to reduce this model into a tractable form
for control/estimation purposes. Though not explicitly
discussed here, one could also consider either CFD
codes or real experimentation to construct a set of rep-
resentative system outputs, for a specific class of inputs,
to later construct control-oriented representations which
describe the dynamics of a given WEC, using data-
driven moment-matching (see [35]).
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Fig. 2: Bode plot for the moment-based reduced models (toroidal device). In particular, (a), (b) and (c), show the
frequency response of the moment-based systems (solid) Σ̃F1

, Σ̃F2
and Σ̃F3

, i.e. G̃F1
, G̃F2

and G̃F3
, respectively.

The target frequency response G(ω) is depicted in all plots with a dashed line. Fig. adapted from [36].

A. Finite order linear parameterisation

Under linear potential flow theory [37], hydrody-
namic models for WEC systems can be generally
represented in terms of the feedback interconnection of
two different subsystems, i.e. ΣI and Σr, as in Fig. 3. In
particular, System ΣI represents inertial effects, while
system Σr represents fluid memory effects that incor-
porate the energy dissipation due to waves radiated as
a consequence of the motion of the structure. Note that
this representation is very general, and includes both
single and multiple degree-of-freedom (DoF) devices,
as well as WEC arrays.

Fig. 3: Schematic of linear model reduction.

While system ΣI depends upon a finite number
of fixed and static system parameters (e.g. mass and
hydrostatic stiffness of the device), Σr is virtually
always built upon a specific impulse response function
[37], characterised by means of hydrodynamic codes in
terms of a finite number of data-points in the frequency-
domain. In other words, the output response of Σr

needs to be computed in terms of a specific convolution
operation. The mere presence of this non-parametric
convolution term implies both a representative and a
computational drawback for a variety of applications,
including WEC control/estimation procedures.

Model reduction techniques can be used to param-
eterise this operator (denoted as Path A in Fig. 3),
commonly in terms of a state-space representation,
which should ideally retain the underlying physical
properties that characterise the WEC process. In particu-
lar, a moment-matching-based solution has been initially
proposed in [15], for single-DoF devices. This has been
later extended to multi-DoF systems in [16], and WEC
arrays in [17], [18]. Furthermore, note that a critical
comparison between this moment-based approach, and
a set of well-established parameterisation techniques in
the wave energy field, can be found in [38].

If the system is linear (as in this case), the steady-state
output response is fully characterised by its associated
frequency-domain mapping. In other words, moments
are in a one-to-one relation with the frequency-response
associated with the target system: Matching moments
directly implies interpolation of the target frequency-response
at a finite number of points, i.e. frequencies. Furthermore,
as shown in [38], [39], essential physical properties
of the device can be retained by (or enforced on) the
reduced order model by moment-matching as a result
of this frequency interpolation feature, such as internal
stability, passivity, and zero dynamics.

Remark 5: Perhaps unsurprisingly, the interpolation
frequencies are the eigenvalues of the dynamic matrix
S in (2). One can achieve exact interpolation at a (user-
selected) set of finite number of points by simply
shaping λ(S) accordingly. Note that, if a frequency
ω ∈ ❘ is selected, then both ±jω need to be chosen
as eigenvalues of S, so as to keep system (2) defined
over ❘. This automatically implies that the dimension
(order) of the resulting reduced model is twice the
number of interpolation points, for each DoF (and WEC)
considered in the parameterisation [17], [18].
Another potential path, to achieve a parametric rep-
resentation of WEC models, is to apply a moment-
matching reduction procedure to the input-output
system Σ directly, i.e. using the frequency response
of the closed-loop behaviour in Fig. 3 (Path B).

1) Case study: We now present a case study based
on a toroidal geometry (floater), which constitutes
one of the main components of devices such as, for
instance, the Ocean Power Technologies (OPT) point
absorber WEC [40]. For simplicity of presentation, the
geometry is assumed to be constrained to move in
heave (translational motion), which is effectively the
DoF from where energy is absorbed in [40]. We discuss
moment-based reduced models for the input-output
dynamics (force-to-velocity) case only (Path B in Fig. 3),
for economy of space. An analogous procedure can be
carried out for the radiation system straightforwardly.

A sensible selection of the set of interpolation points
(frequencies) can be performed by analysing the gain of
the target frequency response, herein termed G(ω), and
selecting points that characterise dynamically important
features of the WEC. A sensible selection includes
the resonant frequency of the device under consid-
eration. Note that this is, effectively, the frequency
where the maximum amplification occurs, i.e. the
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frequency characterising the H∞-norm of the WEC
system. Based on the previous discussion, different
sets of interpolation frequencies are chosen as follows:
F1 = {2.3}, F2 = {1, 2.3}, and F3 = {1, 1.8, 2.3}. Note
that Fi ⊂ Fj for i < j. As can be appreciated from
Fig. 2, the set F1 already includes a key interpolation
point, i.e. the resonant frequency associated with the
DoF under analysis. The set F2 additionally includes
a low-frequency component, while the set F3 further
expands F2 by including a mid-frequency component.

Fig. 2 presents the Bode plot, for both the target
frequency response G(ω) (dashed), and the approximat-
ing frequency response mappings (solid) G̃F1

(ω) in (a),
G̃F2

(ω) in (b), and G̃F3
(ω) in (c) (corresponding with

F1, F2, and F3, respectively). As expected by the the-
oretical foundations of this moment-based strategy, the
approximating models have exactly the same frequency-
domain behaviour as the target model G(ω), for each
element of the corresponding interpolation set F , with
a clear decrease in the overall approximation error from
system G̃F1

towards G̃F3
.

B. Nonlinear model reduction

If we go beyond linear potential flow theory, the
equation of motion describing the WEC system Σ is
not only non-parametric, but can also present complex
nonlinear effects, which can render control and/or state-
estimation strategies unsuitable for realistic applications:
There is a limit for both the analytical complexity
for which a controller/estimator can be effectively
synthesised, and handled in real-time.

The nonlinear moment-based framework, recalled in
Section III, has been recently shown to be a valuable
tool for model reduction of nonlinear WECs in [19],
given the inherent preservation of steady-state response
characteristics. In particular, given that the computation
of a reduced model by moment-matching for nonlinear
systems relies on the availability of a closed-form
solution of the nonlinear partial differential equation
(4), [19] proposes an approximation for the nonlinear
moment, with guarantees of uniform convergence.

The family of nonlinear models reduced by moment-
matching proposed in [19] is inherently parametric
(given specifically in state-space form), and input-to-
state linear, with any nonlinear behaviour confined to
the output mapping only (i.e. a Wiener model). The
linear input-to-state model is characterised in terms of
a set of (user-supplied) dynamically relevant frequencies
F , analogously to the linear case in Section IV-A.
Moreover, given the nature of the Galerkin-like method
proposed to approximate the corresponding moment,
the user can manipulate the degree of complexity
of this nonlinear output mapping, which is defined
via polynomial functions of the state-vector of the
associated signal generator (2), i.e. ξ, with a user-defined
maximum degree Np, hence having full control of
the underlying characteristics of the reduced structure.
Naturally, a large value for Np automatically implies a
high degree of accuracy, at the expense of an increase
in complexity, and vice versa.

1) Case study: To highlight the main features of the
nonlinear moment-based model reduction framework,
an array of two identical spherical heaving point
absorber WECs is considered, each device with a
radius of 2.5 [m], and a distance between devices
set to 5 [m] (see [19] for further detail). The input-
output model not only is non-parametric, but the
following mapping fnl, characterising the nonlinear
effects for this WEC system, is considered: fnl(z, ż) =
[

fnl
re (z1) + fv(ż1) fnl

re (z2) + fv(ż2)
]⊺

where fnl
re (z) =

α1z
3 and fv(ż) = α2ż|ż| represent nonlinear hydrostatic

restoring, and viscous drag effects, respectively, and
where z1 : ❘+ → ❘ and z2 : ❘+ → ❘ denote the
displacement of device 1 and 2, accordingly. The specific
values for {α1, α2} can be found in [19].

The numerical generation of the (irregular) input
waves is fully characterised by a JONSWAP spectrum
with H̄w = 2 [m], T̄w = 8 [s] and peak enhancement
factor is set to γ = 3.3. In addition, the set of frequencies
considerd to characterise the input-to-state dynamics of
the reduced model is F = {0.8, 2}. With this selection
of frequencies, the order (dimension) of the reduced
model by moment-matching is 2f = 4.

Remark 6: As in Section IV-A, the selection of the set
F is not arbitrary: 0.8 [rad/s] represents the frequency
corresponding with the peak characterising the input
spectral density function, while 2 [rad/s] is the fre-
quency characterising the H∞-norm of the Jacobian
linearisation of the WEC system, i.e. the resonant
frequency corresponding to heave motion (see [19]).
Finally, the nonlinear output map characterising the
reduced model (which effectively results from the
Galerkin-based approximation of the corresponding
nonlinear moment), is given in terms of a fifth-order
polynomial surface in ξ, i.e. Np = 5.

0 10 20 30 40 50 60 70 80 90 100

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4: Output of the reduced order model by moment-
matching (solid) and target motion (dashed), for a
randomly generated sea-state realisation. The output
of the Jacobian linearisation about the origin is also
shown, using a dotted blue line. Fig. adapted from [19].

To briefly assess the resulting reduced order model
by moment-matching, Fig. 4 presents results for a
particular (randomly generated) sea state realisation.
As can be directly appreciated from Fig. 4, the output
of the reduced order model by moment-matching (solid)
is effectively able to approximate the target output
(dashed), even during the transient period. For the
benefit of the reader, the output corresponding with
the (non-parametric) Jacobian linearisation of the WEC
model about the origin, is also presented, using a dotted
line. A significant overprediction of velocity can be
appreciated by the linear model, potentially leading to
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an overprediction of power production, which is the
core variable in any energy-maximising controller. The
normalised mean average percentage error for 100 [s]
of simulation time (as shown in Fig. 4), is ≈ 4.6% for
the nonlinear reduced model computed in this section,
vs. ≈ 40% for the case of the Jacobian linearisation.

V. CONTROL OF WECS AND WEC ARRAYS

WEC optimal control design entails an energy-
maximisation criterion, where the objective is to max-
imise the absorbed energy from ocean waves over a
time interval T ⊂ ❘+, which can be cast as an optimal
control problem (OCP), with an objective function J

J (fPTO) =
1

T

∫

T

fPTO(τ)ż(τ)dτ, (6)

where fPTO and z denote the control (PTO) force (to
be optimally designed), and the displacement of the
WEC, respectively. Given that the unconstrained energy-
maximising optimal control law often implies unrealistic
device motion and excessively high PTO (control) forces
(see [2], [3]), constraints on both the displacement and
velocity of the WEC, z and ż, and the exerted control
force fPTO, have to be considered within the optimal
control design, which can be compactly written as

C :
{

|z| ≤ Zmax, |ż| ≤ Żmax, |fPTO| ≤ Fmax, (7)

with t ∈ T , and where
{

Zmax, Żmax, Fmax

}

⊂ ❘+.

Given the control objective function defined in (6),
and the set of state and input constraints defined in (7),
the constrained energy-maximising OCP is

f
opt
PTO = argmax

fPTO

J (fPTO),

s.t.: WEC dynamics Σ & Constraint set C ,
(8)

where system Σ describes the dynamic motion of the
device, in the form of (1).

Remark 7: In order to solve the OCP defined in
(8), full knowledge of the wave excitation force is
required for the time-interval T , i.e. solving (8) im-
plicitly requires instantaneous and future values of wave
excitation, computed via estimation and forecasting
strategies, respectively. The reader is referred to [30],
[31] for further detail on input-unknown estimation and
forecasting techniques applied within the WEC field.

The underpinning idea of the moment-based optimal
control framework, initially proposed for linear systems
in [13], is to solve the OCP (8) via parameterisation of
the steady-state output response of the WEC system in
terms of moments. In particular [13] shows that, besides
being a powerful model reduction tool (as demonstrated
in the Section IV), the parameterisation of the steady-
state response of the WEC system in terms of moments
(i.e. in terms of the solution of a specific invariant
equation, see Section III), can be explicitly used to
transcribe the (infinite-dimensional) energy-maximising
control problem (8) to a finite-dimensional optimisation
program. In other words, the main idea behind moment-
based optimal control is to substitute the WEC dynamic
constraint in (8) by the parameterisation of the WEC

system in terms of moments, explicitly using its steady-
state output behaviour to solve for the corresponding
optimal control input, in terms of a suitably specified
signal generator (2) (further detail in Section V-A).
Furthermore, unlike the majority of the model-based
energy-maximising control strategies reported for WECs
(see [3]), this moment-based strategy does not require
a-priori parametric approximation (i.e. model reduction)
of Σr, but actually provides an analytical description
of the radiation convolution in the moment-domain,
further reducing the associated computational burden.

A. Linear case

Within the linear moment-based optimal control
framework, the energy-maximising OCP can be mapped
into a strictly concave quadratic program (QP), guarantee-
ing a unique solution for the energy-maximising control
objective, subject to both state and input constraints.
This has a strong impact on the practical viability of the
moment-based approach, facilitating the utilisation of
state-of-the-art QP solvers (see [41]), providing a com-
putationally efficient energy-maximising framework.

In particular, given the harmonic nature of ocean
waves (see [42]), both excitation force and control inputs
are expressed in terms of a signal generator as in (2),
with dynamic matrix S such that λ(S) = {±pω0}

Nh

p=1,
where ω0 is the so-called fundamental frequency asso-
ciated with the input variables. In other words, the
signal generator is chosen such that the moments of
the WEC system are computed at a finite number of
Nh harmonics of the fundamental frequency ω0, hence
characterising the steady-state response of the WEC at
these harmonic frequencies. Note that the associated
fundamental period is simply given by T0 = 2π/ω0. With
this specific selection of signal generator, the OCP (8),
with T = T0, can be mapped to a strictly concave QP
problem, i.e. with a problem with a structure:

L
opt
PTO = arg max

LPTO∈❘
2Nh

QP(LPTO),

s.t.: ILPTO ≤ O,
(9)

where the optimal force is f
opt
PTO = L

opt
PTOξ, with ξ the

state-vector of the associated signal generator, and the
set of linear inequalities in {I,O} represent the moment-
based parameterisation of the set of state and input
constraints in (7). The reader is referred to [13] for the
analytical definition of the matrices involved in (9).

Remark 8: Unlike, for instance, MPC, concavity of (9)
is guaranteed without the need for adding regularisation
terms, which can effectively bias the energy-maximising
objective. Strict concavity of (9) is a consequence of the
synergy between moments and the WEC harvesting
process: Due to its oscillating nature, the parameter-
isation of the state-variables in terms of moments
retains fundamental input-output properties of the WEC
model, such as passivity. This is, indeed, exactly what
guarantees existence of a unique global solution in (9).

B. Nonlinear case

The paper [14] presents an energy-maximising control
strategy for WECs subject to nonlinear dynamics. In
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particular, a method to map the objective function
(and system variables) to a finite-dimensional nonlinear
program (NP), is proposed, which can be efficiently
solved using state-of-the-art NP solvers [41].

In particular, since, for nonlinear systems, the com-
putation of the associated moment depends upon the
nonlinear invariance equation (4), an approximation
framework for π is presented in [14], tailored for the op-
timal control scenario. Such an approximation strategy
relies upon an ‘extension’ of the signal generator utilised
in the linear case of Section V-A: A higher number of
harmonics N̄h > Nh, is considered to construct λ(S),
giving origin to the so-called extended signal generator,
with state-vector denoted as ξ̄. Such a generator is
achieved via a set of suitably defined inclusion map-
pings, such that span{ξi} ⊂ span{ξ̄i}, i.e. the function
space generated by the elements of the state-vector of
the signal generator utilised in Section V-A is effectively
‘expanded’ to a higher dimensional structure, generated
in terms of a higher number of harmonics of the
fundamental frequency ω0. The approximated moment
is then computed by a Galerkin-like procedure, i.e. by
projecting π onto the space spanned by the extended
state-vector ξ̄ (see also [12]).

Summarising, the procedure proposed in [14] maps
the OCP (8) for nonlinear WEC systems, to a finite-
dimensional NP with the following structure:

L̄
opt
PTO = arg max

L̄PTO∈❘
2N̄h

QP(L̄PTO) + B(L̄PTO),

s.t.: Ī(L̄PTO) ≤ Ō(L̄PTO),
(10)

where the optimal force is f
opt
PTO = L̄

opt
PTOξ̄, with ξ̄ the

state-vector of the associated extended signal generator,
and where the mappings {Ī, Ō} represent the set of
state and input constraints defined in (7).

Remark 9: Due to the synergy between moments and
the WEC harvesting process (see also Remark 8), the
finite-dimensional moment-based NP presented in (10)
is composed of the sum of a concave quadratic term,
i.e. QP(L̄PTO), and a bounded perturbation B(L̄PTO). In
other words, the mapped objective in (10) belongs to a
family of approximately concave mappings (so-called
outer Γ-concave [43] functions), from where existence of
a global energy-maximising solution can be guaranteed,
under mild assumptions (see [14]). Furthermore, simi-
larly to the case of concave functions, where each local
solution is also global, explicit conditions to determine
whether a local energy-maximising solution is a global
maximiser for the OCP, can be derived, having strong
practical value when solving the associated NP.

C. WEC arrays

As detailed in [22], [23], the case of WEC arrays can
be dealt with analogously to Sections V-A (linear WEC)
and V-B (nonlinear WEC), with a suitable re-definition
of the associated signal generators. In particular, each
respective signal generator needs to be augmented by the
number of devices in the array Nd. This can be achieved
straightforwardly, by ‘replacing’ each corresponding
dynamic matrix S by its augmented counterpart, i.e.

by ■Nd
⊗ S. This naturally implies that the finite-

dimensional moment-based programs presented in (9)
and (10), will be now carried over ❘2NhNd and ❘

2N̄hNd ,
respectively, i.e. the optimisation space is ‘augmented’
by the number of devices Nd in both cases. This
is done without losing the benefits of the moment-based
optimal control approach: For linear arrays, the control
problem is still strictly concave, while for nonlinear
systems, strict outer Γ-concavity is retained, hence also
always admitting a globally optimal energy-maximising
solution (i.e. computationally tractable).

VI. ROBUSTIFYING THE CONTROL SOLUTION

The presence of system uncertainty is ubiquitous in
hydrodynamic modelling. By way of example, some
parameters of the WEC hydrodynamic model can vary
significantly due to the change in the relative motion of
the device [44], or simply due to unmodelled dynamics,
not captured by the (nominal) WEC model. System
uncertainty is not the only source of error inherently
present in the WEC energy-maximising optimal control
problem: Given that the wave excitation force, which
is a key variable in the OCP (8), is virtually always
approximated by means of unknown-input estimation
(instantaneous values) and forecasting (future values)
techniques, input uncertainty is also ubiquitous.

Moment-based solutions for the case of system and
input uncertainties are presented in [20] and [21],
respectively. Both techniques are based upon a suit-
able moment-based characterisation for the uncertainty,
taking into consideration an appropriate uncertainty
set, written in terms of a convex polytope defined
over a real vector space. To this end, the concept of
moments is combined with the robust optimisation
principles considered in [45], by proposing a worst-case
performance (WCP) approach. Necessary and sufficient
conditions on the uncertainty polytope can be explicitly
derived, so that the moment-based robust optimal con-
trol framework always admits a global energy-maximising
solution, preserving all the appealing characteristics of
the (nominal) strategy described in Section V-A.

To be more precise, it is assumed that a nominal WEC
system Σ0 and signal generator G0 are known, and that
the actual system Σ⋆, and generator G⋆, are known
to lie within a set of convex polytopes, denoted as Ps

(system) and Pi (input), respectively. This is shematically
depicted in Fig. 5, where the elements inside each
respective polytope are characterised by the so-called
uncertainty vector δ.

Fig. 5: Schematic representation of uncertainty poly-
topes for both system (left) and input (right) uncertainty.

With such a characterisation of the uncertainty, the
moment-domain optimisation problems recalled in
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Section V-A can be re-formulated based on an OCP
approach. To economise space, suppose J̃ denotes
the linear moment-based objective function (as in
Section V-A), for a given number of harmonics in the
corresponding signal generator with state-vector ξ̃. Let
VP denote the set of vertices associated with either Ps

or Pi. The robust moment-based optimisation problem
can be then formulated, for either system or input
uncertainty, in terms of the following structure:

Lrob
PTO = argmax

L̃PTO

arg min
δ∈VP

J̃ (L̃PTO, δ),

s.t.: Ĩ(L̃PTO, δ) ≤ Õ(L̃PTO, δ), ∀δ ∈ VP ,
(11)

where the robust optimal control force can be com-
puted as f rob

PTO = Lrob
PTOξ̃, with ξ̃ the state-vector of the

associated signal generator, and where the mappings
{Ĩ, Õ} represent the set of state and input constraints
defined in (7), as a function of the uncertainty vector
δ. The problem defined via (11) computes the worst-
case scenario for the moment-based energy-maximising
problem, with respect to every possible uncertainty vector
δ, lying inside the corresponding polytope P .

Remark 10: As a direct consequence of the existence of
a unique globally optimal energy-maximising solution
(see Section V-A), and the definition of the moment-
based uncertainty in terms of a convex polytope, it is
sufficient to solve the robust formulation presented in
(11) only for the elements of the finite set of vertices VP ,
hence (11) being computationally tractable. Furthermore,
guaranteeing constraint satisfaction at every point of
the set of vertices Vδ , automatically ensures constraint
satisfaction for every possible uncertainty δ ∈ P .
Following the discussion provided immediately above,
note that the robust performance case is conservative
by definition, given that it optimises for the worst-case
scenario, in terms of the (defined) system uncertainty. If
an accurate nominal WEC model is available, then the
(nominal) moment-based solution, presented in Section
V-A, is more appropriate, since it delivers optimal
results for Σ0, and can be computed independent of the
definition of the uncertainty set. On the other hand, if
the presence of uncertainty is known to be significant,
then the robust approach is preferred, given that it
‘alleviates’ the potential drop in performance arising
from not having an accurate WEC model, by optimising
for the worst-case (uncertainty) scenario.

VII. RECEDING HORIZON SOLUTIONS

Though highly computationally efficient, a standing
assumption for the moment-based control strategies,
presented in Sections V and VI, is that the wave
excitation input fe can be characterised by a T0-periodic
mapping, with T0 = 2π/ω0, where ω0 is the funda-
mental frequency. If the wave excitation estimation
and forecasting requirements are introduced to the
optimal control formulation, then this assumption can
be limiting in practice. To alleviate the effect behind this
periodicity assumption, a receding-horizon framework
has been presented in [24], which introduces a simple
modification to the representation of the wave excitation
signal in the moment-domain, as discussed below.

We begin by noting that, if T0 is considered to be
sufficiently large (i.e. ω0 is sufficiently small) then
the wave excitation input can be effectively consid-
ered T0-periodic, for any practical purposes (see [42]).
Nonetheless, this remark poses a contradiction: While
the moment-based controllers, recalled in Sections V and
VI, would require a sufficiently large time T0 (equivalent
to a sufficiently large time-horizon in (8)), state-of-
the-art forecasting algorithms are not usually able to
provide an accurate prediction of the wave excitation
force for more than a couple of seconds [31], i.e. precise
information is available throughout a shorter time Th.

Motivated by this limitation in terms of implementa-
tion, [24] introduces a modification of the representation
of fe in the moment-domain, suitable for receding-
horizon control, as follows. Suppose f̃eN denotes the
approximated wave excitation input for a given time-
window ΞN , composed of both estimated and forecasted
values (see Fig. 6). Using the underlying philoso-
phy of the short-term Fourier transform [46], the so-
called apodised wave excitation input can be written as
⌊f̃eN ⌋ϑ = ϑf̃eN , where the apodisation (often also called
windowing) mapping ϑ : ΞN × ❘+ → [0 1] is used to
smoothly bring the wave excitation signal, defined for
a time-horizon Th, down to zero at the edges of the
set ΞN . In other words, the apodised signal ⌊f̃eN ⌋ϑ is
smoothly brought to zero at the boundaries so that
the derivative of its periodic extension is sufficiently
smooth, hence now being well-represented by a signal
generator of the form (2) (as in Sections V and VI).

Fig. 6: Target excitation feN (solid grey), and (apodised)
approximated wave excitation input ⌊f̃eN ⌋ϑ (black), for
the time-window ΞN . Fig. adapted from [24].

With the apodised wave excitation estimate, the
control problem is then solved for the time window
ΞN , the computed optimal input is applied for a time
∆Th ∈ ΞN , and the window is shifted so as to repeat
the process, i.e. in a receding-horizon fashion.

Remark 11: The receding-horizon moment-based con-
troller [24] requires the addition of initial and terminal
(equality) constraints to either (9) (linear WEC) or (10)
(nonlinear WEC). The former guarantee consistency
with respect to the measured outputs of the WEC
system, while the latter enforces closed-loop stability.

VIII. ILLUSTRATIVE DESIGN EXAMPLE

To demonstrate the performance of the moment-
based control framework, we consider the application

81919-



RINGWOOD AND FAEDO: CONTROL DESIGN FRAMEWORK 9

of a receding-horizon nonlinear controller to a full-
scale state-of-the-art CorPower-like wave energy device
oscillating in heave (translational motion). This device,
whose dimensions are based on the experimental study
performed in [47], and has been also considered in [14]
for (open-loop) nonlinear moment-based control. We
consider herein waves generated stochastically from a
JONSWAP spectrum, with H̄s = 2 [m], T̄p ∈ [5, 12] [s],
γ = 3.3, and a length of T = 230 [s].

We take into account two main nonlinear hydrody-
namic forces: viscous effects, and nonlinear restoring
forces. Viscous effects are included via a Morison-
like term, i.e. Fv(ẋ) = −βv|ẋ|ẋ, where βv = 1

2
ργdD,

γd ∈ ❘
+ is the so-called drag coefficient, ρ is the

water density, and D is the characteristic area of the
device. The drag coefficient is set to γd = 0.35, based
on the analysis performed in [48]. Nonlinear restoring
effects are characterised based on the experimental
results presented in [47]. In particular the following
mapping Fnl

r (x) = βr1x
2 + βr2x

3 is considered, where
the coefficients {βr1 , βr2} ⊂ ❘ are determined based on
a least-squares fit, using the experimental results of [47]
as target set, giving a final result of βr1 = −1.55× 104

[kg/ms2] and βr2 = 0.82× 104 [kg/m2s2].
The receding time-horizon is set to Th = 30 [s], i.e.

we consider 15 [s] of both estimated and forecasted
values of fe. Note that this corresponds to a funda-
mental frequency (for a specific time window ΞN )
of ω0 = 2π/30 [rad/s], which provides an accurate
representation of the (windowed) excitation force in
terms of an implicit signal generator (i.e. as in (2)). The
receding window is shifted every 0.1 [s], corresponding
with a sampling rate of 10 [Hz]. The order of the extended
signal generator, used to approximate the corresponding
nonlinear moment to then solve the energy-maximising
OCP (see Section V-B), is set to N̄h = 30. Finally, we set
the maximum allowed displacement and velocity values
to Zmax = 2 [m] and Żmax = 2 [m/s]. The resulting finite-
dimensional NP is solved using a local interior point
method, where we take explicit advantage of the strict
outer convexity of the energy-related objective function
when mapped to the moment-domain, to numerically
ensure that the (potentially local) solution computed
with interior-point methods is, effectively, a global
energy-maximiser (see [14] for further detail).

We now present performance results for the receding-
horizon nonlinear moment-based controller, under both
displacement and velocity constraints, and we com-
pare these (for the benefit of the reader) with the
performance of its linear moment-based counterpart,
where both viscous and nonlinear hydrodynamic effects
are disregarded at the control design stage. Fig. 7
explicitly shows motion (displacement and velocity)
of the device under optimal control conditions, driven
by a particular input wave realisation, for both linear
and nonlinear controllers. Furthermore, instantaneous
power and cumulative energy are also shown, directly
highlighting the difference between linear and nonlinear
controllers in terms of energy absorption performance.
Note that, though both controllers are effectively able to
respect the constraint specifications, the linear controller
does not fully capture the ‘in-phase’ condition (i.e. phase

synchronization) with the wave excitation force input
(see, for instance, [2]), since it ignores relevant nonlinear
dynamics affecting the WEC at the design stage. This
results in both a larger reactive power flow, and less
energy absorption.
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Fig. 7: Displacement, velocity, instantaneous power, and
cumulative energy for an irregular wave realisation, for
both linear (dashed-gray) and nonlinear (solid-black)
moment-based controllers. The (scaled) wave excitation
input is denoted using a dotted-blue line.

IX. CONCLUSIONS

The moment-domain presents an ideal framework
for solving the WEC control, and related, problems.
The choice of variable parameterisation, effected by
the appropriate selection of signal generator in the
moment-based framework results in computationally
efficient solutions, permitting real-time implementation,
even for arrays. The movement from linear to nonlinear
representations, necessitated by the use of control action
itself, is relatively smooth and, most importantly, both
linear and nonlinear WEC control formulations present
a convex optimisation problem, with corresponding
uniqueness and ease of global solution.
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[42] A. Mérigaud and J. V. Ringwood, “Free-surface time-series
generation for wave energy applications,” IEEE Journal of Oceanic
Engineering, vol. 43, no. 1, pp. 19–35, 2018.

[43] H. X. Phu, “Outer γ-convexity in vector spaces,” Numerical
Functional Analysis and Optimization, vol. 29, no. 7-8, pp. 835–854,
2008.

[44] G. Giorgi and J. V. Ringwood, “Consistency of viscous drag
identification tests for wave energy applications,” in 12th
European Wave and Tidal Energy Conference (EWTEC), 2017.

[45] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,”
Mathematics of operations research, vol. 23, no. 4, pp. 769–805, 1998.

[46] K. M. Prabhu, Window functions and their applications in signal
processing. CRC press, 2013.
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