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Quantifying hydrodynamic model uncertainty
for robust control of wave energy devices
Mahdiyeh Farajvand, Demián Garcı́a-Violini, Christian Windt, Valerio Grazioso, and John V.

Ringwood

Abstract—Wave energy converter (WEC) modelling at-
tracts significant uncertainty, often due to the need to
develop compact parametric models for simulation, op-
timisation and control design. For linear models, which
form the basis of many WEC control philosophies, this
uncertainty can be as a result of real system nonlinear-
ity, particularly as a result of control action, as well as
more general uncertainty in the hydrodynamic modelling
process. Recent developments in WEC control include the
development of robust control algorithms, which utilise a
nominal linear model, but tolerate a level of uncertainty in
the model parameters. This study develops a framework
for identifying a nominal model plus model uncertainty
bounds, which uses data from nonlinear computational
fluid dynamics (CFD) simulation. Two robust control solu-
tions are developed, one with an analytical approach, for
circular uncertainty boundaries, and a further numerical
approach, considering uncertainty sets of arbitrary shape.
Finally, the comparative controller performance, based on
the appropriate selection of a nominal model and uncer-
tainty bound, compared to a non-robust nominal controller,
is shown.

Index Terms—Computational fluid dynamics, system
identification, model uncertainty, pseudospectral, robust
control, energy maximisation

I. INTRODUCTION

THE development of cost-competitive and commer-
cial wave energy converter (WEC) technology is

a challenging task. Optimal energy extraction from
WECs, formulated in terms of the optimal control
problem, is a solution to improve the cost compet-
itiveness of WECs. Early work on optimal control
technique for WECs for energy absorption improve-
ment can be found in [1]. The majority of control
strategies for WECs are model-based, where the control
efficacy is significantly affected by the accuracy of the
system model. WECs operate under the influence of
the dynamics of the different conversion stages and
complex fluid-structure interactions, posing consider-
able uncertainty in device modelling. Neglecting such
uncertainty will affect the control performance. There-
fore, efficiently handling WEC model uncertainty is of
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paramount importance in the development of model-
based control strategies.

Recent studies on sensitivity and robustness issues
associated with WEC controllers, which consider pos-
sible unknown model parameters, modelling errors,
external disturbances and non-causal forces, can be
found in [2-7]. To briefly summarise, a model focusing
on the impact of wave excitation force prediction errors
is proposed in [2], which is crucial for the design of
non-causal robust control. Robust moment-based en-
ergy maximising optimal control of WECs, considering
parametric model uncertainty is studied in [3]. The
study in [4] takes an uncertain power-take off (PTO)
system into account for the design of robust optimal
control strategy. Estimation of numerical uncertainty
in computational fluid dynamics (CFD) simulation of
a point absorber WEC with a passive controller are in-
vestigated in [5]. The study performed in [6] estimates
the modeling uncertainty in an online manner which
is used to formulate the optimal control problem for a
WEC. [7] considers a WEC subject to stochastic incident
waves to investigate the energy maximising controller,
designed to be robust to unstructured uncertainty.

For energy maximisation control problems, under
the linear hydrodynamic model assumption of WECs,
uncertainty or nonlinearity in the device model can
occur as the device motion is exaggerated by control ac-
tion. Investigation of the resulting modelling paradox
of WECs due to control force action can be found in [8].
New modelling techniques in WECs provide a large
amount of high-fidelity data. A review of nonlinear
approaches for mathematical modeling of WECs is
presented in [9]. CFD is a fully nonlinear model of
WECs, based on solving the Navier-Stokes equations
for the analysis of fluid behavior [9]. Recently, CFD-
based numerical wave tank (CNWT) models capture all
relevant hydrodynamic nonlinearities, including large
surface deformation, viscous drag or turbulence effects
[10]. CNWT models have been shown to provide high-
fidelity analysis of WECs and to be a powerful tool for
power production assessment [11], [12]. High-fidelity
models of WECs, implementing the Navier-Stocks
equations, are approximate model structures. There-
fore, even nonlinear high-fidelity models of WECs can
contain parametric or nonparametric uncertainty [13].
For real-time model-based control strategies, real sys-
tem behaviour can be obtained by means of a local lin-
earisation technique, where the system parameters are
locally accurate at each operating point [14]. However,
the control design of such a parameter-varying system
increases the complexity of the problem. Moreover,
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tracking all the potential parameter changes of the
system is a difficult task. To address these challenges,
recent developments in WEC control problems have
focussed on robust control strategies based on a linear
nominal model, together with an uncertainty bound.
A methodology for representing linear hydrodynamic
models of WECs, based on numerical wave tank exper-
iments and nonlinear CFD models has been developed
in [15].

The work presented in this work studies an optimal
robust strategy with application to WECs, but with
a specific focus on the determination of modelling
uncertainty. Optimal WEC control, based on spectral
and pseudospectral methods, both of which are classes
of direct transcription methods, is widely considered,
with applications to WECs in [16] [17] [18] [19]. In most
of the literature, spectral and pseudospectral problems
are considered in a non-robust sense, considering only
nominal mathematical models. Recently, a novel frame-
work is proposed which considers a nominal model
plus dynamical uncertainty in the computation of ro-
bust optimal control for spectral and pseudospectral
methods, for wave energy applications [20]. Accuracy
in calculation of the uncertainty bound can signifi-
cantly impact the WEC control function and a closer,
non-conservative, fitting of the uncertainty boundary
is shown to improve device performance.

The focus of this paper is on the accurate selection
of the linear nominal model and quantification of
uncertainty bound, based on high-fidelity nonlinear
CFD simulation and the design of an optimal controller
which is robust to modelling uncertainty.

The remainder of this paper is organised as follows:
The WEC model is described in section II, where the
numerical modeling framework, as well as the nomi-
nal and uncertainty models for robust control design,
is presented. Section III details the robust controller
design procedure and how uncertainty regions are
defined. Section IV presents the method for nominal
model determination, based on a system identification
methodology, while the process for uncertainty esti-
mation is described in Section V. Section VI demon-
strates an application example, using CFD simulation,
for the WEC model. Uncertainty estimation, for the
example under study, is examined in Section VII, while
the robust controller design example of the study is
provided in Section VIII. Finally, conclusions on the
overall application are drawn in Section IX.

II. WEC MODEL

The fully nonlinear model of the device is imple-
mented in a numerical wave tank using a mesh-based
CFD method. CFD numerically solves the Navier-
Stokes equations. Navier-Stokes solvers have the ad-
vantage of including all nonlinear effects and provid-
ing a high-fidelity model of WECs. The OpenFOAM
package is an open sourse CFD library which is used
as the Navier-Stokes solver. Incompressible Reynolds
average Navier-Stokes (RANS) equations, can be writ-
ten [8] as:

∇ · (ρ(t, x)U(t, x)) = 0 (1)

∂ρ(t, x)U(t, x)

∂t
+∇ · ρU(t, x)U(t, x) = −∇p(t, x)+

∇ · (µ∇U(t, x)) + ρfb(t, x) + fu(t, x), (2)

where equations (1) and (2) are the conservation equa-
tions for mass and momentum, respectively. In the
above equations, t is the time, U(t) is the fluid velocity
field, p(t) the fluid pressure, ρ the fluid density, µ the
dynamic viscosity, and fb(t) the external forces, such
as gravity.

The mathematical WEC model considered for the
control problem of this study is based on a common
theoretical background, known as Cummin’s equation.
Under the assumption of an inviscid fluid and irrota-
tional and incompressible incident flow, the equation
of motion for a WEC, in terms of Cummin’s equation,
can be expressed [21] as:

(M +m∞)ẍp(t) +

∫ +∞

0

hr(τ)ẋp(t− τ)dτ+

shxp(t) = fex(t) + u(t), (3)

where xp(t), ẋp(t) = v(t) and ẍp(t) are the WEC
position, velocity, and acceleration, respectively. M is
the mass of the oscillating body, and m∞ the added
mass at infinite frequency. hr(t) is the radiation force
impulse response, arising from the fact that device
motion is affected by surrounding fluid, and sh is
hydrodynamic stiffness, related to the buoyancy force.
Additionally, in Eq. (3), fex(t) is the wave excitation
force, produced by the action of incoming waves, and
u(t) represents the control force applied through the
PTO system.

In this paper, a pseudospectral method is utilised to
discretise the problem which approximates the states
and control variables, in an N -dimensional vector
space, with a linear combination of the orthogonal
basis functions, Φ = {φi}

N
i=1. The states and the control

signal of the system are commonly approximated as
follows:

xi(t) ≈ x
N
i (t) =

N
∑

j=1

φj(t)xij = Φ(t)x̂i (4a)

u(t) ≈ uN (t) =

N
∑

j=1

φj(t)uj = Φ(t)û, (4b)

where weight vectors are grouped as x̂i =
[xi1 · · · xiN ]⊺ ∈ R

N , and û = [u1 · · · uN ]⊺ ∈ R
N .

These vectors are determined by forcing the projection
of the residual functions over the set of test functions
Ψ = {ψj}

N
j=1 to be zero. Using the pseudospectral

method, the approximation of the equation of motion
becomes the linear system [20]

v̂ = Go(û + ê) , (5)

where v̂ = [v1 v2 · · · vN ]⊺ corresponds to the ap-
proximation of v(t), which can be obtained by a linear
combination of the vectors x̂i, defined in Eq. (4a), and
û = [u1 u2 · · · uN ]⊺, as stated in Eq. (4b). Go is the sys-
tem model, represents the mapping between û+ê, which
is the approximation of the input ui(t) = u(t) + fex(t),
and v̂. Additionally, in Eq. (5), ê = [e1 e2 · · · eN ]⊺ ∈ R

n,
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where the set {ei}
N
i=1 contains the coefficients of the

excitation force approximation on the basis Φ(T), i.e.
fex(t) = fex(T) ≈ Φ(T)ê, where T = {t1, t2, . . . , tM}
indicates an equally spaced time discretisation set with
a sampling rate tm. Thus, when the the Fourier set of
basis functions Φ(t) are considered, as in the applica-
tion case of this study in Section VIII, then

Φ(T) =











cos(ω1t1) sin(ω1t1) · · · cos(ωN t1) sin(ωN t1)
cos(ω1t2) sin(ω1t2) · · · cos(ωN t2) sin(ωN t2)

...
...

...
...

...
cos(ω1tM ) sin(ω1tM ) · · · cos(ωN tM ) sin(ωN tM )











Thus, coefficients of the excitation force, ê, are com-
puted as follows:

ê = (Φ(T)⊺Φ(T))−1Φ(T)TFex(T)

The basis functions are chosen such that Go satisfies

Go =

N/2
⊕

k=1

[

Ro
k Iok

−Iok Ro
k

]

(6)

where

Ro
k = Re{go(jωk)}, I

o
k = Im{go(jωk)},

with Ro
k, I

o
k ∈ R, and go(jωk) represents the nominal

frequency response of the system at frequencies ωk.
Additionally, Go ∈ R

n is a block diagonal matrix and
the symbol

⊕

denotes the direct sum of n matrices,
i.e.

⊕n
i=1

Ai = diag{A1, A2, · · · , An}.
For application of the robust control approach, a

model of the system G is defined considering a realistic
situation. The real system, based on the nominal model
Go and the uncertainty set of multiplicative type, can
be formulated as:

G = Go(I +∆m) (7)

where ∆m ∈ R
N×N represents the bounded multiplica-

tive uncertainty, and I is the identity matrix.

III. ROBUST CONTROLLER DESIGN

A. Preliminaries

1) Control problem definition: The control objective for
the WEC system is to maximise the total absorbed
energy. For a WEC system, which is subject to an
external excitation force Fe(t) and is controlled via a
control force u(t), the total absorbed energy over the
interval [0 T ], is computed as:

J ≡ E = −

∫ T

0

Pdt = −

∫ T

0

v⊺(t)u(t)dt (8)

where E is the absorbed energy, P the instantaneous
power, u(t) the control force applied through the PTO
system, and v(t) the device velocity, as defined in
Eq. (3). Eq. (8) defines the objective function J for
this study. The optimal control problem consists of
obtaining the PTO control force u(t), that maximizes
the objective function J , subject to the equation of
motion. Due to orthogonality of the basis functions

φj , the application of pseudospectral approximations
to the objective function J results in:

J ≈ JN =

∫ T

0

û⊺Φ⊺(t)Φ(t)v̂ = −
T

2
û⊺v̂ (9)

It can be easily seen how the integral relationship of
Eq. (8) is transformed into an algebraic equation.

2) Nominal optimal solution: By substituting Eq. (5)
into the approximate absorbed energy expression in Eq.
(9), the following equality is obtained:

JN = −
T

2
û⊺Go(û + ê) (10)

Eq. (10) is a quadratic function, in which the optimisa-
tion problem is carried out over the control variable û
alone. In order to guarantee the existence of a max-
imum value for the objective function of the WEC,
the system should be passive, i.e. its transfer function
should be positive real [22]. In contrast to energy
maximising problems of WECs, using boundary ele-
ment methods (BEM), in which passivity of the system
would be satisfied by definition, WEC modeling using
experimental data does not guarantee the passivity
condition. In order to meet the feasibility condition
for the energy maximisation problem of a WEC, using
experimental data, it is necessary to render the system
passive. Guaranteeing the existence of a maximum for
the objective function, Eq. (10) can be restated as:

û⋆o ← max
∀ûo∈RN

JN (11)

For an unconstrained quadratic problem, û⋆o, which
maximises Eq. (9) is:

û⋆o = −(Go +G⊺
o)

−1Goê

The expression in Eq. (11) will be used in the robust
formulation. Then, the optimal value of JN , when Eq.
(11) is substituted in Eq. (9), becomes:

J⋆
N =

T

2
û⋆⊺o Go(û

⋆
o + e)

B. Robust Approach: Best Worst-Case Performance (WCP)

The spectral and pseudospectral methods discussed
in Section II are based on a precise description of
the system. To proceed with the robust approach, we
consider a realistic situation, where the system is de-
scribed using the nominal and uncertainty model. The
representation of the real system in (7) can be restated
using additive uncertainty as:

G = Go +∆a

where ∆a ∈ R
N×N represents the bounded additive

uncertainty. Then the relation between the multiplica-
tive uncertainty and additive uncertainty is:

∆a = Go∆m,

∆a takes the following form:

∆a =

N/2
⊕

k=1

[

δRk δIk
−δIk δRk

]
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and the objective function JN is redefined as:

JN = −
T

2
û⊺

N/2
⊕

k=1

([

Ro
k Iok

−Iok Ro
k

]

+

[

δRk δIk
−δIk δRk

])

(û + ê)

(12)
where (Ro

k, I
o
k) represents the location of the nominal

system. For the Fourier basis,

g(jωk) = go(jωk) + δk ⇔ δk = g(jωk)− go(jωk),

where δk ∈ C represents the uncertainty level at the
frequency ωk with δRk = Re{δk} and δIk = Im{δk}.

Considering the feasibility, the real system model, G,
must be positive real [20]:

Rk = Ro
k + δRk > 0, (13)

where Rk is the real part of the location of the real
system.

Using the feasibility condition, and defining the best-
WCP solution as the input that minimises the perfor-
mance degradation when the system under study is
affected by a bounded uncertainty set ∆a, the robust
control problem statement can be defined as:

û⋆r ← max
û∈RN

min
∆a∈U

JN (14)

Eq. (14) represents a robust quadratic formulation,
where U indicates the set of all possible uncertainties.
Generally, Eq. (14) can be rewritten into a minimax
problem [23].

C. Uncertainty regions

Uncertainty sets can have different shapes and sizes
with this section providing the solution for Eq. (14) via
two different types of uncertainty representation. First,
an analytical approach is proposed. The difficulty of an
analytical approach is that system constraints cannot be
considered in the problem. Then, a suboptimal numer-
ical procedure, which can be applied to unstructured
uncertainty, is shown. Numerical methodology has the
advantage of viability to address a wide range of cases;
however, in this method, the numerical complexity can
grow exponentially.

1) Analytical solution approach: Different boundary
schemes of the uncertainty set can be selected for the
analytical solution approach. In the present study, a
convex and circular boundary is considered, as shown
in Fig. 1(a). (Rk, Ik) represents the location of the real
system and Pk is the set of all possible locations of
the real system, which includes all the points on and
within the hull of the geometry. Circular uncertainty
sets can be defined in terms of a radius 0 ≤ ρk ≤ ρ̄k
and an angle 0 ≤ θk ≤ 2π; thus:

δRk = Re{ρke
jθk}, δIk = Im{ρke

jθk},

which must be repeated for each k-block in Eq. (12).
Then,

Rk = Ro
k + δRk , Ik = Iok + δIk ,

where (δRk , δ
I
k ) represents the deviation from the nom-

inal model and (Rk, Ik) ∈ Pk. The worst case solution
will be obtained on the hull of the circle (ρk = ρ̄k).

Using a circular boundary and the analytical approach,
the optimal solution [20] is:

û⋆r =

N/2
⊕

j=1

−
1

2

[

1 B⋆k
−B⋆k 1

]

, (15)

where

B⋆k =
Iok + ρ̄ksinθ

⋆
k

Ro
k + ρ̄kcosθ⋆k

The location for θ⋆k, where JN reaches the minimum
over the space of control inputs, is given [20] as:

θ⋆k =
c3k

√

c1
2

k + c2
2

k

− arctan
c1k
c2k
, (16)

with

c1k = 2IokR
o
k, c2k = ρ̄2k + Iok −R

o2
k , c3k = −2ρ̄kI

o
k

(a) (b)

Fig. 1. (a) A convex and circular boundary of the uncertainty set.
(b) Arbitrary points set.

2) Numerical solution approach: Possible uncertainty
sets associated with the numerical approach include
non-polytopic convex sets, polytopic convex sets, and
arbitrary point sets [20]. In this study, an uncertainty
set of arbitrary point type is used for the numerical
approach, as shown in Fig. 1(b). The solid green points
in Fig. 1(b) are those that should be included in the
discretisation.

The standard minimax framework for the problem,
in discrete form, is presented [20] as:

min
û∈RN

max
∆i

a
∈U

T

2
û⊺Gi(û + ê)

with Gi = Go + ∆i

a, where ∆i

a is the perturbation
associated at each i-point selected for the grid.

Now, the problem can be formulated in the standard
minimax form:

min
û∈RN

max
i

Fi(û) subject to C(û), (17)

where Fi(û) = (T/2)(û)⊺Gi(û + ê), and C(û) is a set
of constraints. When numerical solvers are used to
compute the optimal solution of the problem stated in
Eq. (17), constraints can be straightforwardly included
in the formulation.
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IV. NOMINAL MODEL DETERMINATION

A. Identification test

In this study, system identification tests are per-
formed by driving a finite-set of N exciting input
signals, generating a corresponding set of output sig-
nals. The input signals are chosen as chirp-up signals,
f iu(t) = Ai sin(ω(t)t), where f iu(t) is the input force,
A is the amplitude of the chirp signal and index i
indicates the experiment number defined in accordance
with each element of the set. In these tests, the device
motion is excited solely by the control force f iu(t), and
no incident waves are presented; fex(t) = f̃ex(t) = 0.

B. Model identification

This paper identifies a (nominal) linear design
model via a frequency-domain black-box identifica-
tion methodology. For force-to-velocity system iden-
tification, a set of chirp experiments is performed.
Considering each element of the input signal set, an
empirical transfer function estimate (ETFEs), Hi(jw),
is computed using the chirp force signal f iu(t) and its
corresponding generated output, vim(t) [24] as:

Hi(jw) =
V i
m(jw)

F i
u(jw)

. (18)

C. Nominal model selection criteria

In the frequency domain, different approaches can be
taken to define a nominal model, based on the ETFE.
The potential approaches for selecting nominal model
are:

1) Nominal model based on experimental test
In this approach, a specific ETFE, which is the
most representative of the system dynamics, is
selected. An ETFE corresponding to a low input
amplitude could result in a more representative
description of the system, in terms of physical
behaviour. To be more specific, a low input am-
plitude will generate small displacements of the
WEC, satisfying the linear assumption in Cum-
min’s equation.

2) A synthetically-built nominal model
In this approach, a nominal model is built based
on specific dynamical specification. In a robust
control approach, a nominal model correspond-
ing to a minimum uncertainty size will result
in a less conservative controller. An important
example of a nominal model corresponding to
minimum uncertainty size is one based on the
centre of the minimum radius circles in the com-
plex plane, where the circles contain all the ex-
perimental responses at each frequency. In this
method, the real model of the system will be
included within the minimum radius circles. A
similar approach, involving Gershgorin circles,
also employs a set of circles of minimum radius.
The Gershgorin circle theorem identifies a region
in the complex plane that contains all the eigen-
values of a complex square matrix [25].

V. UNCERTAINTY ESTIMATION

The uncertainty inherent in the WEC model is esti-
mated by pursuing the following subsequent steps:

1) Experiment design: The first step in uncertainty
estimation is the experiment design, where the
type of input force signal, signal time length,
number and amplitudes of the experimental set
are chosen, based on the WEC under study.

2) CFD simulation: After the experiment design step,
and specification of experimental set-up parame-
ters, CFD simulations are performed, using the
chosen set of exciting input signals, and corre-
sponding output signals are obtained.

3) ETFE computation: This step includes the compu-
tation of ETFEs, based on the data obtained from
CFD simulations.

4) Nominal model selection: The ETFEs of the experi-
mental set are used to choose a sensible nominal
model for the optimal control problem.

5) Uncertainty set determination: An appropriate un-
certainty set type is chosen among the possible
types of uncertainty set boundaries, as discussed
in Section III-C

6) Uncertainty estimation: The nominal model and
uncertainty set are used to quantify the model
uncertainty for the robust optimal control prob-
lem.

VI. APPLICATION EXAMPLE

A. Example WEC system

The wave energy device under investigation is a
point absorber-type device with axisymmetric cylin-
drical geometry and a hemispherical bottom [8]. The
schematic of the considered WEC and the dimensions
of the numerical wave tank are shown in Figs. 2(a)
and 2(b), respectively. The radii of the hemisphere and
the cylinder of the buoy are 0.25m. Also, the height of
the cylindrical section is 0.25m. The mass of the buoy
is 43.67 kg, and the centre of the mass is located at a
vertical distance of 0.191m from the bottom-most point
of the hemisphere. The WEC structure is tested in a
numerical wave tank with 3m water depth.

3.0m

m

0.25m

0.5m

0.25m
0.131m

0.322m

3.0m2.678m

x

z
~

~

(a)

(b)

Fig. 2. Schematic of the (a) WEC structure including all relevant
physical properties and (b) numerical wave tank (side view).
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B. OpenFOAM model simulation

Fully nonlinear hydrodynamic simulation of the de-
vice is implemented using the open-source CFD tool-
box OpenFOAM [26], where the amplitudes of the
chirp-up force signals are contained in the set A =
{10, 20, 40, 50, 60}N and the frequencies rate variation
(chirp rate) of the chirp signals is 6Hz/s. Each element
of the set is driven by a finite-set of N exciting force
signals (inputs), that generate a corresponding set of
velocity signals (outputs). Time traces and spectral
density distributions of the input and output signal of
a chirp experiment, corresponding to maximum input
amplitude of A = 10N , is shown in Fig. 3.

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

10
0

10
1

Frequency [rad/s]Time [s]

|F
ex

(ω
)|

 [
d
b
]

 |V
(ω

)|
 [

d
b
]

v(
t)

 [
m

/s
]

f e
x 

(t
) 

[N
]

Fig. 3. Time and frequency analysis of the input chirp and output
signals corresponding to maximum input amplitude of A = 10N .

For this study, the simulation time of the chirp
experiments is specified on the interval [0 25] s. The
reason for neglecting the simulation time for t > 25 s
is the appearance of reflections in the numerical tank,
which can be observed from the rise in the amplitude
of the time trace velocity signals beyond 25 s in Fig.
3. The frequency range considered for this study is
highlighted in the right-hand side plots of the Fig. 3
which comfortably covers the resonance frequency of
the device and the frequencies around it.

C. Model identification

ETFEs (magnitude and phase) and peak resonance
points, corresponding to each experiment of the set A
with i ∈ {1, 2, 3, 4, 5} where the index i indicates the
experiment number defined in accordance with each
element of the set of amplitudes A, are illustrated in
Fig. 4. Variability in the frequency responses, for differ-
ent input amplitudes, is a clear indication of nonlinear
behaviour for the system under analysis. It is worth
mentioning that the obtained damping, at resonance,
decreases as long as the displacement, i.e. Ai, increases.

D. Wave excitation force specification

The control part of this study is based on the as-
sumption of full knowledge of the wave excitation
force. Wave excitation force tests are simulated in the
CFD environment, where the WEC is exposed to irreg-
ular incident waves, taken from JONSWAP spectrum
with a significant wave height of Hs = 0.1m, peak
period Tp = 1.94s, and steepness parameter λ = 3.3.
This condition represents realistic, scaled, conditions
at the AMETS test site in Bellmullet, Co. Mayo, off the
West Coast of Ireland [27].
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Fig. 4. Empirical transfer function estimate (ETFE) for the five
experimental chirp signals
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Fig. 5. Representative nominal model possibilities, based on exper-
imentation with maximum amplitude force of 20N, and centres of
the minimum radius circles.

VII. MODEL UNCERTAINTY ESTIMATION

A. Nominal model selection

In this study, two different nominal models are con-
sidered for the assessment of robust control.

A) A nominal model Gtest(ω) based on experimentation.
In this approach, an ETFE according to the method

described in IV-C(1) is considered to describe the
nominal behaviour of the system. Taking the lowest
amplitude of the set of input signals, Ai = 10N ,
deviations related to this input signal in the ETFE
are observed, as can be seen in Fig. 4. Viscous drag,
limited mesh definition in the CFD environment, etc.
can be a potential cause for this error. As a result, the
ETFE corresponding to the amplitude of Ai = 10N is
unlikely to be an accurate description of the system
model. Consequently, the ETFE corresponding to the
second lowest input amplitude, Ai = 20N , which
is the most suitable experimental representation of
the system is chosen as the nominal nominal model,
Gtest(ω). Gtest(ω) is close to the linear representation
of the system where the hydrodynamic parameters
are formulated under the assumption of small waves
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and small body motions; thus satisfying the linear
assumption in Cummins’ equation.

B) A nominal model Gcircle(ω) synthetically built to
minimise the experimental uncertainty.

In this approach, the nominal model is built accord-
ing to the method described in Section IV-C(2).

The two resulting nominal models considered for
this study are depicted in Fig. 5.

B. Quantifying model uncertainty

In this study, in order to provide a consistent uncer-
tainty boundary, ∆m(ω) must be particularly studied
when:

max
16i65

{|∆m(ω)|} = max
16i65

{∣

∣

∣

∣

Hi(ω)−Go(ω)

Go(ω)

∣

∣

∣

∣

}

(19)

Fig. 6 shows the multiplicative uncertainty bound for
the two cases of nominal models over the complete
frequency range.
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Fig. 6. Uncertainty size |∆m| using multiplicative uncertainty struc-
ture for two different nominal models.

Comparing the uncertainty size corresponding to the
two different nominal models, Gtest(ω) and Gcircle(ω),
it can be seen that selection of the centre of the min-
imum radius circles as a nominal model, results in a
smaller size of multiplicative uncertainty bound, |∆m|.

The complete model information, including ETFEs
and WEC resonances, nominal models, and circular
uncertainty boundaries, are presented in a Nyquist plot
shown in Fig. 7, where:
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Fig. 7. Nyquist plot including ETFEs and WEC resonances, nominal
models, and circular boundaries at ω⋆ = 4.5, ω⋆ = 5.25, ω⋆ =
5.75, ω⋆ = 6.15, ω⋆ = 6.80 rad/s

1) The solid lines represent the ETFEs of the set of
responses related to five different maximum val-
ues of the input forces. The ETFE corresponding

to maximum force of 20N, selected as one of the
nominal models in this study, is illustrated with
a thick dark blue line.

2) The red dotted line represents the second nominal
model scenario for this study, which is based
on the centre of the minimum radius circles,
containing all the experimental responses at each
frequency.

3) The blue circlular markers represent the location
of the WEC resonance points, for each ETFE.

4) The star markers represent the ETFEs of each
set for five randomly selected frequencies of
ω⋆ = 4.5, ω⋆ = 5.25, ω⋆ = 5.75, ω⋆ = 6.15, ω⋆ =
6.80 rad/s, which indicate the clockwise direction
for increasing ω.

5) The red circular markers represent the centre of
the minimum radius circles at the five selected
frequencies. Also, the radius (rcircle) and location
of the minimum radius circles, including all the
experimental points at the selected frequencies,
are depicted in the Fig. 7.

C. Excitation force representation

The time domain and frequency domain data repre-
senting the wave excitation force, extracted from the
numerical simulation data, are shown with the orange
line in the top left and top right plots of the Fig. 8,
respectively. The excitation force is approximated using
76 frequency components which perfectly cover the
resonance frequency of the device and surrounding
frequencies. Based on these frequency components,
approximation of the excitation force is computed and
the result in both time and frequency domain are
shown with the blue dotted line in top plots of Fig.
8. Using 76 frequency components, good agreement
between the approximated excitation wave force f̃ex(t)
and experimental excitation wave force fex(t) can be
observed. In Fig. 8, the bottom left plot shows the
error between fex(t) and f̃ex(t), while the sin and cos
coefficients of the excitation force, ê, are shown in the
bottom right plot of the Fig. 8.
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Fig. 8. Experimental and approximated wave excitation force

VIII. ROBUST CONTROLLER DESIGN EXAMPLE

A. Feasibility Analysis

The real system used for the robust controller design
can be discretized using 76 frequency components. The
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discrete real system model in Nyquist domain, based
on the second scenario nominal model, Gcircle(ω), and
a circular uncertainty bound, is represented in Fig. 9.
Considering the feasibility condition for the problem
described in Eq. (13), a feasible maximisation problem
is satisfied only if both the nominal model and uncer-
tainty bounds lie in the right-half complex plane. In
order to meet this feasibility condition, the frequency
points corresponding to the location of nominal model,
and uncertainty bounds, in the left-hand plane must be
omitted. Fig. 10 shows representations of the system
using both nominal scenarios, Gcircle(ω) and Gtest(ω),
where the system has been rendered to a passive type.
The passive representation of the system is achieved
with 22 frequency components.
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Fig. 9. Representation of the real system based on nominal model
Gcircle(ω) and circular uncertainty bound.
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Fig. 10. Representation of a passive system approximated with 22
frequency points for the two nominal model cases.

B. Controller design

This part presents the design procedure and control
performance assessment of the robust control frame-
work introduced in Section III. Both analytical and
numerical robust control designs are presented and the
results are compared with an equivalent non-robust
approach [16].

1) Analytical Approach: The analytical approach to
the robust control problem is carried out by consid-
ering two nominal models, Gcircle(ω) and Gtest(ω). In
this approach, two input forces for the optimal control
are computed:

• uo(t), the optimal control input force is computed
using the nominal approach, i.e. using the nominal
model, Gcircle(ω) and without considering any
possible uncertainty.

• ur(t), the optimal control input force is computed
using the robust approach, i.e. using the nom-
inal model, Gcircle(ω), and uncertainty bound,
rcircle(ω).

The sin and cos frequency component coefficients
for the optimal control inputs, uo(t) and ur(t) for the
analytical approach are represented in Fig. 11.
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4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

Fig. 11. Frequency components of the optimal control inputs for the
analytical approach.

• The blue lines with circular markers represent the
frequency component coefficients of uo(t).

• The orange lines with empty circular markers
represent the frequency component coefficients of
ur(t), using 100% of the radius of the uncertainty
bound circles.

• The yellow lines with square markers represent
the frequency component coefficients of ur(t) us-
ing 50% of the radius of the uncertainty bound
circles.

• The purple lines with diamond markers represent
the frequency component coefficients of ur(t) us-
ing 25% of the radius of the uncertainty bound
circles.

Based on the results represented in Fig. 11, it can
be concluded that by decreasing the radius of the
uncertainty bound circles, the frequency component
coefficients of ur(t) converge on the frequency com-
ponent coefficients of uo(t). Thus, the frequency com-
ponent coefficients of ur(t) using 0% of the radius
of the uncertainty bound circles are equivalent to the
frequency component coefficients of uo(t).

The assessment of the control performance in the
analytical approach is performed using the following
procedure:

1) uo(t) is applied to Gcircle(ω) and Gtest(ω).
2) ur(t) is applied to Gcircle(ω) and Gtest(ω).

Fig. 12 shows the time trace of absorbed energy
for the analytical approach when uo(t) and ur(t) are
applied to Gcircle(ω) and Gtest(ω).

• The blue line with circular markers represents
the absorbed energy when uo(t) is applied to the
nominal model Gcircle(ω). This case is the ideal
performance, where the optimal control input us-
ing nominal model Gcircle(ω) is applied to the
same nominal system.
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Fig. 12. Time trace of the absorbed energy for the analytical
approach, applying different control input forces to the different
nominal models.

• The orange line with circular markers represents
the absorbed energy when uo(t) is applied to the
nominal model Gtest(ω). This case is the worst per-
formance where the optimal control input using
nominal model Gcircle(ω) is applied to the nominal
model Gtest(ω).

• The yellow line with diamond markers represents
the absorbed energy when ur(t) is applied to the
nominal model Gcircle(ω). In this case, the perfor-
mance of the system has improved and absorbed
energy of the system has moved closer to the
absorbed energy for ideal performance.

• The purple line with diamond markers represents
the absorbed energy when ur(t) is applied to the
nominal model Gtest(ω).

Comparing the results of applying ur(t) to the two
different nominal models, the impact of the correct
selection of nominal model and uncertainty bound is
highlighted. In robust control, applying ur(t) to the
nominal model based on the centre of the minimum
radius circles (Gcircle(ω)), which corresponds to a small
size of uncertainty bound, improves the control perfor-
mance.

Fig. 12 shows that the mean generated power using
the robust approach is always non-negative, which is
in accordance with the principle of non-consumption
of power using robust approaches. In this study, nom-
inal control also results in a positive mean absorbed
energy, but in the general (non-robust) case, it can take
negative value [20].

2) Numerical approach: The numerical approach of
the robust control is exercised using the nominal
model, Gtest(ω). In this approach, two solutions for the
optimal control forces are computed:

• uo(t) is computed using the nominal approach, i.e.
using the nominal model, Gtest(ω).

• ur(t) is computed using the robust approach,
based on experimental test models, Hi(ω).

The sin and cos frequency component coefficients of
the optimal control inputs, uo(t) and ur(t) for the nu-
merical approach are represented in Fig. 13. To assess
the control performance of the numerical approach, the
following steps are taken:

1) uo(t) is applied to Hi(ω)
2) ur(t) is applied to Hi(ω)

-1.5

-1

-0.5

0

0.5

1

1.5

2

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

Fig. 13. Frequency components of the optimal control inputs for the
numerical approach.

Fig. 14 shows the time traces of the absorbed energy
for the numerical approach when uo(t) and ur(t) are
applied to the experimental test models and the WCP
is computed at each instantaneous time.

• The blue line represents the absorbed energy when
uo is applied to the complete set of experimental
models and the WCP at each instantaneous time
is computed.

• The orange line represents the absorbed energy
when ur is applied to the complete set of experi-
mental models and the WCP at each instantaneous
time is computed.

Comparing the results of the absorbed energy for
the two cases in Fig. 14, the advantage of using the
robust approach, i.e. applying ur(t) to the real models,
compared to a non-robust approach, i.e. applying uo(t)
to the real models, can be seen. Using the robust control
approach always results in a positive mean absorbed
energy for the WEC system. Even though, applying
the nominal controller to the WEC system under study
resulted in a positive mean absorbed energy, it can take
negative value in a general (non-robust) case.
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Fig. 14. Time trace of the absorbed energy for the numerical
approach, applying different control input forces to the experimental
test models.

IX. CONCLUSIONS

This paper focuses on WEC control design which is
robust against inaccuracies, including modeling uncer-
tainties and nonlinearities which are dominant in the
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hydrodynamic model. The following conclusions can
be drawn from this study:

• Modelling errors are present in all nominal mod-
els, linear or nonlinear. Estimating the parametric
uncertainty for a WEC control design is as impor-
tant as estimating the nominal model.

• For control design of WECs, selecting a representa-
tive nominal model and specifying the uncertainty
bound as small as possible gives the least con-
servative control performance, as demonstrated in
Fig.12.

• Robust control design based on correct specifica-
tion of the nominal model and uncertainty region
guarantees non-negative mean generated power.

• Even for the case of numerical modelling of WECs
using CFD simulations, the passivity of the sys-
tem, as presented by simulation data, cannot be
guaranteed. Simulation data, or the process that
generates the ETFE, are the potential causes for
generating non-passive system characteristics. For
the case of real data in the presence of measure-
ment noise, the passivity condition could be more
significantly violated.

• In the robust control of WECs, which preserves
physical passivity, there are some unsolved prob-
lems in relation to how the nominal model and
uncertainty bound can be specified. Selection of a
sensible nominal model and uncertainty quantifi-
cation for a non-passive wave energy systems is
an important avenue for future research.

ACKNOWLEDGEMENTS

The authors would like to acknowledge

• Maynooth University for providing a John and
Pat Hume Doctoral Award - WISH AWARD for
Mahdiyeh Farajvand.

• Science Foundation Ireland (SFI) for funding John
V. Ringwood and Valerio Grazioso under con-
tract number SFI/13/IA/1886, and MaREI (SFI
Research Centre for Energy, Climate and Marine),
under contract number SFI/12/RC/2302 P2 for
financial support.

REFERENCES

[1] H. Eidsmoen, “Optimum control of a floating wave-energy con-
verter with restricted amplitude,” Journal of Offshore Mechanics
and Arctic Engineering, vol. 118, no. 2, pp. 96–102, 1996.

[2] F. Fusco and J. Ringwood, “A model for the sensitivity of non-
causal control of wave energy converters to wave excitation
force prediction errors,” in Proceedings of the 9th European Wave
and Tidal Energy Conference (EWTEC). School of Civil Engineer-
ing and the Environment, University of Southampton, 2011.
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